Spaces:
Runtime error
Runtime error
JackismyShephard
commited on
Commit
•
8c72189
1
Parent(s):
76172d0
add application file
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import pipeline
|
3 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
MODEL_NAME = "JackismyShephard/whisper-medium.en-finetuned-gtzan"
|
7 |
+
|
8 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
9 |
+
|
10 |
+
pipe = pipeline(
|
11 |
+
task="audio-classification",
|
12 |
+
model=MODEL_NAME,
|
13 |
+
device=device,
|
14 |
+
)
|
15 |
+
|
16 |
+
def classify_audio(filepath):
|
17 |
+
preds = pipe(filepath)
|
18 |
+
outputs = {}
|
19 |
+
for p in preds:
|
20 |
+
outputs[p["label"]] = p["score"]
|
21 |
+
return outputs
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
demo = gr.Blocks()
|
26 |
+
|
27 |
+
file_transcribe = gr.Interface(
|
28 |
+
fn=transcribe,
|
29 |
+
#TODO not sure we need list here
|
30 |
+
inputs=[
|
31 |
+
#TODO not sure we need '.inputs.'
|
32 |
+
gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"),
|
33 |
+
#TODO add inputs source upload here, if possible?
|
34 |
+
#TODO add inputs source youtube here, if possible?
|
35 |
+
],
|
36 |
+
outputs="label", #TODO not sure about this
|
37 |
+
layout="horizontal", #TODO not sure we need this
|
38 |
+
theme="huggingface",
|
39 |
+
title="Classify Genre of Music",
|
40 |
+
description=(
|
41 |
+
"Classify long-form audio or microphone inputs with the click of a button! Demo uses the"
|
42 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to classify audio files"
|
43 |
+
" of arbitrary length."
|
44 |
+
),
|
45 |
+
examples=[
|
46 |
+
["./example.flac", "transcribe", False],
|
47 |
+
["./example.flac", "transcribe", True],
|
48 |
+
],
|
49 |
+
cache_examples=True,
|
50 |
+
allow_flagging="never",
|
51 |
+
)
|
52 |
+
|
53 |
+
mic_transcribe = gr.Interface(
|
54 |
+
fn=transcribe,
|
55 |
+
inputs=[
|
56 |
+
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
|
57 |
+
],
|
58 |
+
outputs="label", #TODO not sure about this
|
59 |
+
layout="horizontal",
|
60 |
+
theme="huggingface",
|
61 |
+
title="Classify Genre of Music",
|
62 |
+
description=(
|
63 |
+
"Classify long-form audio or microphone inputs with the click of a button! Demo uses the"
|
64 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to classify audio files"
|
65 |
+
" of arbitrary length."
|
66 |
+
),
|
67 |
+
allow_flagging="never",
|
68 |
+
)
|
69 |
+
|
70 |
+
with demo:
|
71 |
+
gr.TabbedInterface([file_transcribe, mic_transcribe], ["Classify Audio File", "classify Microphone input"])
|
72 |
+
|
73 |
+
demo.launch(enable_queue=True)
|