File size: 6,727 Bytes
fc95e33
 
 
 
ab4b174
cd4fae0
fc95e33
 
 
 
 
 
 
 
 
 
 
7e6294d
fc95e33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd4fae0
fc95e33
 
 
 
 
 
 
cd4fae0
 
fc95e33
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from fastapi import FastAPI
from fastapi.responses import HTMLResponse
from transformers import AutoTokenizer
from pydantic import BaseModel
from llama_cpp import Llama
import time

class Message(BaseModel):
    content: str
    token: int

class System(BaseModel):
    sys_prompt: str
    

app = FastAPI()

@app.get("/", response_class=HTMLResponse)
def greet_json():
    return '''<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>FastAPI Chatbot</title>
    <style>
        body {
            font-family: Arial, sans-serif;
            margin: 0;
            padding: 0;
            background-color: #f4f4f9;
            display: flex;
            flex-direction: column;
            align-items: center;
        }
        .container {
            margin-top: 60px;
            width: 90%;
            margin-bottom: 20px;
        }
        .system-prompt {
            display: flex;
            justify-content: space-between;
            margin-bottom: 20px;
        }
        .system-prompt input {
            width: 70%;
            padding: 10px;
            border: 1px solid #ccc;
            border-radius: 4px;
        }
        .system-prompt button {
            padding: 10px 20px;
            border: none;
            background-color: #007bff;
            color: white;
            border-radius: 4px;
            cursor: pointer;
        }
        .system-prompt button:hover {
            background-color: #0056b3;
        }
        .chatbox {
            background-color: #fff;
            border-radius: 8px;
            box-shadow: 0 2px 5px rgba(0,0,0,0.1);
            padding: 20px;
            height: 400px;
            overflow-y: auto;
        }
        .message {
            margin-bottom: 10px;
        }
        .user {
            text-align: right;
            color: #007bff;
        }
        .assistant {
            text-align: left;
            color: #333;
        }
        .input-section {
            display: flex;
            width: 100%;
            margin-top: 20px;
        }
        .input-section input {
            flex: 1;
            padding: 10px;
            border: 1px solid #ccc;
            border-radius: 4px;
            margin-right: 10px;
        }
        .input-section input:focus {
            outline: none;
            border-color: #007bff;
        }
        .input-section button {
            padding: 10px 20px;
            border: none;
            background-color: #28a745;
            color: white;
            border-radius: 4px;
            cursor: pointer;
        }
        .input-section button:hover {
            background-color: #218838;
        }
        .token-input {
            width: 100px;
            margin-left: 10px;
        }
    </style>
</head>
<body>
    <div class="container">
        <div class="system-prompt">
            <input type="text" id="systemPrompt" placeholder="Enter System Prompt">
            <button onclick="setSystemPromptAndClearHistory()">Set prompt and clear history</button>
        </div>
        <div class="chatbox" id="chatbox"></div>
        <div class="input-section">
            <input type="text" id="userInput" placeholder="Type your message here...">
            <input type="number" id="tokenLength" class="token-input" value="50" placeholder="Tokens">
            <button onclick="sendMessage()">Send</button>
        </div>
    </div>

    <script>
        async function setSystemPromptAndClearHistory() {
            const systemPrompt = document.getElementById('systemPrompt').value;
            const response = await fetch('/setSystemPrompt', {
                method: 'POST',
                headers: {
                    'Content-Type': 'application/json'
                },
                body: JSON.stringify({ sys_prompt: systemPrompt })
            });
            if (response.ok) {
                document.getElementById('chatbox').innerHTML = '';
                alert('System prompt set and history cleared.');
            } else {
                alert('Failed to set system prompt.');
            }
        }

        async function sendMessage() {
            const userInput = document.getElementById('userInput').value;
            const tokenLength = parseInt(document.getElementById('tokenLength').value);
            if (!userInput || isNaN(tokenLength)) {
                alert('Please enter a valid message and token length.');
                return;
            }

            const chatbox = document.getElementById('chatbox');
            const userMessage = document.createElement('div');
            userMessage.className = 'message user';
            userMessage.textContent = userInput;
            chatbox.appendChild(userMessage);

            const response = await fetch('/chat', {
                method: 'POST',
                headers: {
                    'Content-Type': 'application/json'
                },
                body: JSON.stringify({ content: userInput, token: tokenLength })
            });

            if (response.ok) {
                const data = await response.json();
                const assistantMessage = document.createElement('div');
                assistantMessage.className = 'message assistant';
                assistantMessage.textContent = data.response;
                chatbox.appendChild(assistantMessage);
                document.getElementById('userInput').value = '';
            } else {
                alert('Failed to get response from server.');
            }

            chatbox.scrollTop = chatbox.scrollHeight;
        }
    </script>
</body>
</html>'''

llm = Llama.from_pretrained(
    repo_id="Qwen/Qwen2.5-1.5B-Instruct-GGUF",
    filename="qwen2.5-1.5b-instruct-q8_0.gguf",
    verbose=False
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct")

messages = []

@app.post("/chat")
def chat(req: Message):
    a = time.time()
    messages.append({"role": "user", "content": req.content})
    text = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    output = llm(text,max_tokens=req.token,echo=False)
    response = output['choices'][0]['text']
    messages.append({"role": "assistant", "content": response})
    b = time.time()
    return {"response": response, "time": b-a}


@app.post("/setSystemPrompt")
def chat(req: System):
    messages.append({"role": "user", "content": req.sys_prompt})
    return {"response": "System has been set"}

@app.post("/clear_chat")
def clear_chat():
    global conversation_history
    conversation_history = []
    return {"message": "Chat history cleared"}