HelperBot / app.py
asv7j's picture
Update app.py
ab4b174 verified
raw
history blame
6.67 kB
from fastapi import FastAPI
from fastapi.responses import HTMLResponse
from transformers import AutoTokenizer
from pydantic import BaseModel
from llama_cpp import Llama
class Message(BaseModel):
content: str
token: int
class System(BaseModel):
sys_prompt: str
app = FastAPI()
@app.get("/, response_class=HTMLResponse")
def greet_json():
return '''<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>FastAPI Chatbot</title>
<style>
body {
font-family: Arial, sans-serif;
margin: 0;
padding: 0;
background-color: #f4f4f9;
display: flex;
flex-direction: column;
align-items: center;
}
.container {
margin-top: 60px;
width: 90%;
margin-bottom: 20px;
}
.system-prompt {
display: flex;
justify-content: space-between;
margin-bottom: 20px;
}
.system-prompt input {
width: 70%;
padding: 10px;
border: 1px solid #ccc;
border-radius: 4px;
}
.system-prompt button {
padding: 10px 20px;
border: none;
background-color: #007bff;
color: white;
border-radius: 4px;
cursor: pointer;
}
.system-prompt button:hover {
background-color: #0056b3;
}
.chatbox {
background-color: #fff;
border-radius: 8px;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
padding: 20px;
height: 400px;
overflow-y: auto;
}
.message {
margin-bottom: 10px;
}
.user {
text-align: right;
color: #007bff;
}
.assistant {
text-align: left;
color: #333;
}
.input-section {
display: flex;
width: 100%;
margin-top: 20px;
}
.input-section input {
flex: 1;
padding: 10px;
border: 1px solid #ccc;
border-radius: 4px;
margin-right: 10px;
}
.input-section input:focus {
outline: none;
border-color: #007bff;
}
.input-section button {
padding: 10px 20px;
border: none;
background-color: #28a745;
color: white;
border-radius: 4px;
cursor: pointer;
}
.input-section button:hover {
background-color: #218838;
}
.token-input {
width: 100px;
margin-left: 10px;
}
</style>
</head>
<body>
<div class="container">
<div class="system-prompt">
<input type="text" id="systemPrompt" placeholder="Enter System Prompt">
<button onclick="setSystemPromptAndClearHistory()">Set prompt and clear history</button>
</div>
<div class="chatbox" id="chatbox"></div>
<div class="input-section">
<input type="text" id="userInput" placeholder="Type your message here...">
<input type="number" id="tokenLength" class="token-input" value="50" placeholder="Tokens">
<button onclick="sendMessage()">Send</button>
</div>
</div>
<script>
async function setSystemPromptAndClearHistory() {
const systemPrompt = document.getElementById('systemPrompt').value;
const response = await fetch('/setSystemPrompt', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify({ sys_prompt: systemPrompt })
});
if (response.ok) {
document.getElementById('chatbox').innerHTML = '';
alert('System prompt set and history cleared.');
} else {
alert('Failed to set system prompt.');
}
}
async function sendMessage() {
const userInput = document.getElementById('userInput').value;
const tokenLength = parseInt(document.getElementById('tokenLength').value);
if (!userInput || isNaN(tokenLength)) {
alert('Please enter a valid message and token length.');
return;
}
const chatbox = document.getElementById('chatbox');
const userMessage = document.createElement('div');
userMessage.className = 'message user';
userMessage.textContent = userInput;
chatbox.appendChild(userMessage);
const response = await fetch('/chat', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify({ content: userInput, token: tokenLength })
});
if (response.ok) {
const data = await response.json();
const assistantMessage = document.createElement('div');
assistantMessage.className = 'message assistant';
assistantMessage.textContent = data.response;
chatbox.appendChild(assistantMessage);
document.getElementById('userInput').value = '';
} else {
alert('Failed to get response from server.');
}
chatbox.scrollTop = chatbox.scrollHeight;
}
</script>
</body>
</html>'''
llm = Llama.from_pretrained(
repo_id="Qwen/Qwen2.5-1.5B-Instruct-GGUF",
filename="qwen2.5-1.5b-instruct-q8_0.gguf",
verbose=False
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct")
messages = []
@app.post("/chat")
def chat(req: Message):
messages.append({"role": "user", "content": req.content})
text = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
output = llm(text,max_tokens=req.token,echo=False)
response = output['choices'][0]['text']
messages.append({"role": "assistant", "content": response})
return {"response": response_text}
@app.post("/setSystemPrompt")
def chat(req: System):
messages.append({"role": "user", "content": req.sys_prompt})
return {"response": "System has been set"}
@app.post("/clear_chat")
def clear_chat():
global conversation_history
conversation_history = []
return {"message": "Chat history cleared"}