Spaces:
Build error
Build error
File size: 13,047 Bytes
d3c3946 be6dbc5 d3c3946 be6dbc5 d3c3946 be6dbc5 d3c3946 be6dbc5 d3c3946 be6dbc5 d3c3946 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
# %%
import os
import json
import urllib.parse
from tempfile import _TemporaryFileWrapper
import pandas as pd
import requests
import streamlit as st
from streamlit_chat import message
from streamlit_extras.add_vertical_space import add_vertical_space
from streamlit_extras.colored_header import colored_header
st.set_page_config(
layout="wide",
page_title="pdfGPT-chat. Ask your PDF!",
page_icon=":robot_face:",
)
def main():
@st.cache_data
def convert_df(df):
return df.to_csv(index=False).encode("utf-8")
def pdf_change():
st.session_state["pdf_change"] = True
def check_api(api_key):
return api_key.startswith("sk-") and len(api_key) == 51
def check_url(url):
parsed_url = urllib.parse.urlparse(url)
return all([parsed_url.scheme, parsed_url.netloc])
def result_to_dict(r, start):
result = r.json()["result"]
result = result.split("###")[start:]
keys = ["prompt", "answer", "token_used", "gpt_model"]
# Error in OpenAI server also gives status_code 200
if len(result) >= 0:
result.extend([result, 0, gpt_model])
return dict(zip(keys, result))
def load_pdf():
if file is None and len(pdf_url) == 0:
return st.error("Both URL and PDF is empty. Provide at least one.")
elif len(pdf_url) > 0:
if not check_url(pdf_url):
return st.error("Please enter valid URL.")
elif file is not None:
return st.error(
"Both URL and PDF is provided. Please provide only one (either URL or PDF)."
)
# load pdf from url
else:
r = requests.post(
f"{LCSERVE_HOST}/load_url",
json={
"url": pdf_url,
"rebuild_embedding": st.session_state["pdf_change"],
"embedding_model": embedding_model,
"gpt_model": gpt_model,
"envs": {
"OPENAI_API_KEY": OPENAI_API_KEY,
}
},
)
# load file
else:
_data = {
"rebuild_embedding": st.session_state["pdf_change"],
"embedding_model": embedding_model,
"gpt_model": gpt_model,
"envs": {
"OPENAI_API_KEY": OPENAI_API_KEY,
}
}
r = requests.post(
f"{LCSERVE_HOST}/load_file",
params={"input_data": json.dumps(_data)},
files={"file": file},
)
if r.status_code != 200:
if "error" in r.json():
if "message" in r.json()["error"]:
return st.error(r.json()["error"]["message"])
else:
return str(r.json())
elif r.json()["result"].startswith("Corpus Loaded."):
st.session_state["loaded"] = True
st.session_state["pdf_change"] = False
# extract result
result = result_to_dict(r, 1)
# concatenate reply
reply_summary = "Hello there. I'm **pdfGPT-chat**.\nHere is a **summary** of your PDF:\n\n"
reply_summary += result["answer"]
reply_summary += "\n\nDo you have any **question** about your PDF?"
if len(st.session_state["past"]) == 1:
st.session_state["generated"][0] = reply_summary
else:
st.session_state["past"].append("Hi")
st.session_state["generated"].append(reply_summary)
# calculate cost
calculate_cost(result["token_used"], result["gpt_model"])
return st.success("The PDF file has been loaded.")
else:
return st.info(r.json()["result"])
def generate_response(
lcserve_host: str,
url: str,
file: _TemporaryFileWrapper,
question: str,
) -> dict:
if question.strip() == "":
return "[ERROR]: Question field is empty"
_data = {
"question": question,
"rebuild_embedding": st.session_state["pdf_change"],
"embedding_model": embedding_model,
"gpt_model": gpt_model,
"envs": {
"OPENAI_API_KEY": OPENAI_API_KEY,
},
}
if url.strip() != "":
r = requests.post(
f"{LCSERVE_HOST}/ask_url",
json={"url": url, **_data},
)
else:
r = requests.post(
f"{LCSERVE_HOST}/ask_file",
params={"input_data": json.dumps(_data)},
files={"file": file},
)
if r.status_code != 200:
content = r.content.decode() # Convert bytes to string
with open("langchainlog.txt", "w") as file:
file.write(content)
return f"[ERROR]: {r.text}"
result_dict = result_to_dict(r, 0)
return result_dict
def calculate_cost(token_used, gpt_model):
st.session_state["total_token"] += int(token_used)
if "gpt-3" in gpt_model:
current_cost = st.session_state["total_token"] * 0.002 / 1000
else:
current_cost = st.session_state["total_token"] * 0.06 / 1000
st.session_state["total_cost"] += current_cost
# %%
# main page layout
header = st.container()
welcome_page = st.container()
response_container = st.container()
input_container = st.container()
cost_container = st.container()
load_pdf_popup = st.container()
# sidebar layout
input_details = st.sidebar.container()
preferences = st.sidebar.container()
chat_download = st.sidebar.container()
# %%
# instantiate session states
if "api_key" not in st.session_state:
st.session_state["api_key"] = False
if "generated" not in st.session_state:
st.session_state["generated"] = ["Hello there. I'm pdfGPT-chat. Do you have any question about your PDF?"]
if "loaded" not in st.session_state:
st.session_state["loaded"] = False
if "past" not in st.session_state:
st.session_state["past"] = ["Hi"]
if "pdf_change" not in st.session_state:
st.session_state["pdf_change"] = True
if "total_cost" not in st.session_state:
st.session_state["total_cost"] = 0
if "total_token" not in st.session_state:
st.session_state["total_token"] = 0
# %%
# constants
E5_URL = "https://github.com/microsoft/unilm/tree/master/e5"
EMBEDDING_CHOICES = {
"multilingual-e5-base": "Multilingual-E5 (default)",
"e5-small-v2": "English-E5-small (faster)",
}
GPT_CHOICES = {
"gpt-3.5-turbo": "GPT-3.5-turbo (default)",
"gpt-4": "GPT-4 (smarter, costlier)",
}
LCSERVE_HOST = "http://localhost:8080"
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
PDFGPT_URL = "https://github.com/bhaskatripathi/pdfGPT"
SIGNATURE = """<style>
.footer {
position: static;
left: 0;
bottom: 0;
width: 100%;
background: rgba(0,0,0,0);
text-align: center;
}
</style>
<div class="footer">
<p style='display: block;
text-align: center;
font-size:14px;
color:darkgray'>Developed with ❤ by asyafiqe</p>
</div>
"""
with header:
st.title(":page_facing_up: pdfGPT-chat")
with st.expander(
"A fork of [pdfGPT](%s) with several improvements. With pdfGPT-chat, you can chat with your PDF files using [**Microsoft E5 Multilingual Text Embeddings**](%s) and **OpenAI**."
% (PDFGPT_URL, E5_URL)
):
st.markdown(
"Compared to other tools, pdfGPT-chat provides **hallucinations-free** response, thanks to its superior embeddings and tailored prompt.<br />The generated responses from pdfGPT-chat include **citations** in square brackets ([]), indicating the **page numbers** where the relevant information is found.<br />This feature not only enhances the credibility of the responses but also aids in swiftly locating the pertinent information within the PDF file.",
unsafe_allow_html=True,
)
colored_header(
label="",
description="",
color_name="blue-40",
)
with preferences:
colored_header(
label="",
description="",
color_name="blue-40",
)
st.write("**Preferences**")
embedding_model = st.selectbox(
"Embedding",
EMBEDDING_CHOICES.keys(),
help="""[Multilingual-E5](%s) supports 100 languages.
E5-small is much faster and suitable for PC without GPU."""
% E5_URL,
on_change=pdf_change,
format_func=lambda x: EMBEDDING_CHOICES[x],
)
gpt_model = st.selectbox(
"GPT Model",
GPT_CHOICES.keys(),
help="For GPT-4 you might have to join the waitlist: https://openai.com/waitlist/gpt-4-api",
format_func=lambda x: GPT_CHOICES[x],
)
# %%
# sidebar
with input_details:
# sidebar
pdf_url = st.text_input(
":globe_with_meridians: Enter PDF URL here", on_change=pdf_change
)
st.markdown(
"<h2 style='text-align: center; color: black;'>OR</h2>",
unsafe_allow_html=True,
)
file = st.file_uploader(
":page_facing_up: Upload your PDF/ Research Paper / Book here",
type=["pdf"],
on_change=pdf_change,
)
if st.button("Load PDF"):
st.session_state["loaded"] = True
with st.spinner("Loading PDF"):
with load_pdf_popup:
load_pdf()
# %%
# main tab
if st.session_state["loaded"]:
with input_container:
with st.form(key="input_form", clear_on_submit=True):
user_input = st.text_area("Question:", key="input", height=100)
submit_button = st.form_submit_button(label="Send")
if user_input and submit_button:
with st.spinner("Processing your question"):
response = generate_response(
LCSERVE_HOST,
pdf_url,
file,
user_input,
)
st.session_state.past.append(user_input)
st.session_state.generated.append(response["answer"])
# calculate cost
calculate_cost(response["token_used"], response["gpt_model"])
if not user_input and submit_button:
st.error("Please write your question.")
with response_container:
if st.session_state["generated"]:
for i in range(len(st.session_state["generated"])):
message(
st.session_state["past"][i], is_user=True, key=str(i) + "_user"
)
message(st.session_state["generated"][i], key=str(i))
cost_container.caption(
f"Estimated cost: $ {st.session_state['total_cost']:.4f}"
)
else:
with welcome_page:
st.write("")
st.subheader(
""":arrow_left: To start please fill input details in the sidebar and click **Load PDF**"""
)
# %%
# placed in the end to include the last conversation
with chat_download:
chat_history = pd.DataFrame(
{
"Question": st.session_state["past"],
"Answer": st.session_state["generated"],
}
)
csv = convert_df(chat_history)
st.download_button(
label="Download chat history",
data=csv,
file_name="chat history.csv",
mime="text/csv",
)
add_vertical_space(2)
st.markdown(SIGNATURE, unsafe_allow_html=True)
# %%
# # javascript
#
# # scroll halfway through the page
js = f"""
<script>
function scroll() {{
var textAreas = parent.document.querySelectorAll('section.main');
var halfwayScroll = 0.4 * textAreas[0].scrollHeight; // Calculate halfway scroll position
for (let index = 0; index < textAreas.length; index++) {{
textAreas[index].scrollTop = halfwayScroll; // Set scroll position to halfway
}}
}}
scroll(); // Call the scroll function
</script>
"""
st.components.v1.html(js)
# reduce main top padding
st.markdown(
"<style>div.block-container{padding-top:1.5em;}</style>",
unsafe_allow_html=True,
)
# reduce sidebar top padding
st.markdown(
"<style>.css-ysnqb2.e1g8pov64 {margin-top: -90px;}</style>",
unsafe_allow_html=True,
)
if __name__ == "__main__":
main()
|