File size: 4,614 Bytes
77a9749 caa834f d5c587b 77a9749 caa834f b71dfde d5c587b 67ae5fa 7237bc9 d5c587b 1a20ca0 d5c587b 1a20ca0 d825330 1a20ca0 d5c587b 77a9749 1a20ca0 caa834f c0968b9 2b8f53a 77a9749 d5c587b a6ca949 caa834f 10a2425 caa834f 57381cd 1a20ca0 caa834f 77a9749 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
df = pd.read_csv("code_eval_board.csv")
df = df.sort_values(by=["Average score"], ascending=False)
headers = df.columns.to_list()
def plot_throughput(bs=1):
throughput_column = 'Throughput (tokens/s)' if bs==1 else 'Throughput (tokens/s) bs=50'
df['symbol'] = 2 # Triangle
df['color'] = ''
df.loc[df['Models'].str.contains('StarCoder|SantaCoder'), 'color'] = 'orange'
df.loc[df['Models'].str.contains('CodeGen'), 'color'] = 'pink'
df.loc[df['Models'].str.contains('Replit'), 'color'] = 'purple'
df.loc[df['Models'].str.contains('WizardCoder'), 'color'] = 'green'
df.loc[df['Models'].str.contains('CodeGeex'), 'color'] = 'blue'
fig = go.Figure()
for i in df.index:
fig.add_trace(go.Scatter(
x=[df.loc[i, throughput_column]],
y=[df.loc[i, 'Average score']],
mode='markers',
marker=dict(
size=[df.loc[i, 'Size (B)'] + 10],
color=df.loc[i, 'color'],
symbol=df.loc[i, 'symbol']
),
name=df.loc[i, 'Models'],
hovertemplate =
'<b>%{text}</b><br><br>' +
f'{throughput_column}: %{{x}}<br>'+
'Average Score: %{y}<br>' +
'Peak Memory (MB): ' + str(df.loc[i, 'Peak Memory (MB)']) + '<br>' +
'Human Eval (Python): ' + str(df.loc[i, 'humaneval-python']),
text=[df.loc[i, 'Models']],
showlegend=True
))
fig.update_layout(
autosize=False,
width=700,
height=600,
title=f'Average Score Vs Throughput (A100-80GB, Float16, Batch Size <b>{bs}</b>)',
xaxis_title=f'{throughput_column}',
yaxis_title='Average Code Score',
)
return fig
demo = gr.Blocks()
with demo:
with gr.Row():
gr.Markdown(
"""<div style="text-align: center;"><h1> โญ Multilingual <span style='color: #e6b800;'>Code</span> Models <span style='color: #e6b800;'>Evaluation</span></h1></div>\
<br>\
<p>We compare performance of base multilingual code generation models on <a href="https://huggingface.co/datasets/openai_humaneval">HumanEval</a> benchmark and <a href="https://huggingface.co/datasets/nuprl/MultiPL-E">MultiPL-E</a>. Following the <a href="https://huggingface.co/spaces/optimum/llm-perf-leaderboard">๐ค Open LLM-Perf Leaderboard ๐๏ธ</a>, we also measure throughput and provide\
information about the models. We only compare pre-trained multilingual code models, that people can start from as base models for their trainings.</p>"""
)
with gr.Column():
with gr.Tabs(elem_classes="A100-tabs") as A100_tabs:
with gr.TabItem("๐ Evaluation table", id=0):
leaderboard_df = gr.components.Dataframe(
value=df, headers=headers, datatype=["str" for _ in range(len(headers))]
)
with gr.TabItem("๐ Performance Plot", id=1):
with gr.Row():
bs_1_plot = gr.components.Plot(
value=plot_throughput(bs=1),
elem_id="bs1-plot",
show_label=False,
)
bs_50_plt = gr.components.Plot(
value=plot_throughput(bs=50),
elem_id="bs50-plot",
show_label=False,
)
with gr.Row():
gr.Markdown(
"""Notes:
<ul>
<li> Throughputs and peak memory usage are measured using <a href="https://github.com/huggingface/optimum-benchmark/tree/main">Optimum-Benchmark</a> which powers <a href="https://huggingface.co/spaces/optimum/llm-perf-leaderboard">Open LLM-Perf Leaderboard</a>. (0 throughput corresponds to OOM).</li>
<li> All models were evaluated with the <a href="https://github.com/bigcode-project/bigcode-evaluation-harness/tree/main">bigcode-evaluation-harness</a> with top-p=0.95, temperature=0.2 and n_samples=50.</li>
<li> HumanEval-Python, reports the pass@1 on HumanEval, the rest is from MultiPL-E benchmark.</li>
<li> Average score is the average pass@1 over all languages. For Win Rate, we compute model rank for each language as <pre><code>num_models - (rank -1)</code></pre> and average their rankings.</li>
<li> #Languages column represents the number of programming languages included during the pretraining.
</ul>"""
)
demo.launch()
|