File size: 2,856 Bytes
aeaa0ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import pandas as pd
import numpy as np


data = {
    "Models": [
        "CodeGen-16B-Multi",
        "StarCoder-15B",
        "StarCoderBase-15B",
        "StarCoderBase-7B",
        "StarCoderBase-3B",
        "Replit-2.7B",
        "SantaCoder-1.1B",
        "StarCoderBase-1.1B",
        "CodeGen25-7B-mono",
        "CodeGen25-7B-multi",
    ],
    "humaneval-python": [19.26, 33.57, 30.35, 28.37, 21.50, 20.00, 18.12, 15.17, 33.04, 29.05],
    "java": [22.20, 30.22, 28.53, 24.44, 19.25, 18.10, 15.00, 14.20, 19.75, 26.01],
    "javascript": [19.15, 30.79, 31.70, 27.35, 21.32, 15.68, 15.47, 13.38, 23.22, 26.27],
    "cpp": [21.00, 31.55, 30.56, 23.30, 19.43, 16.86, 6.20, 11.68, 18.62, 25.75],
    "php": [8.37, 26.08, 26.75, 22.12, 18.55, 13.25, 1.50, 9.94, 16.75, 21.98],
    "julia": [0.00, 23.02, 21.09, 21.77, 16.10, 10.06, 0.00, 11.31, 4.65, 19.11],
    "d": [7.68, 13.57, 10.01, 8.10, 4.97, 2.78, 0.00, 4.65, 4.32, 8.84],
    "lua": [8.50, 23.89, 26.61, 23.35, 18.04, 2.83, 0.10, 12.52, 6.75, 23.44],
    "r": [6.45, 15.50, 10.18, 14.51, 10.10, 6.29, 0.00, 5.73, 4.41, 11.59],
    "ruby": [0.00, 1.24, 17.25, 18.39, 3.93, 10.75, 0.00, 0.31, 0.00, 17.72],
    "racket": [0.66, 0.07, 11.77, 11.08, 7.87, 2.10, 0.00, 5.03, 4.07, 10.37],
    "rust": [4.21, 21.84, 24.46, 22.60, 16.32, 13.63, 2.00, 10.24, 7.83, 21.84],
    "swift": [1.25, 22.74, 16.74, 15.10, 9.98, 5.44, 0.70, 3.92, 1.71, 16.62],
}

throughput = {"CodeGen-16B-Multi": 0,
              "StarCoder-15B":0,
              "StarCoderBase-15B":0,
              "StarCoderBase-7B":0,
              "StarCoderBase-3B":0,
              "StarCoderBase-1.1B":0,
              "SantaCoder-1.1B":0,
              "Replit-2.7B":0,
              "CodeGen25-7B-mono": 0,
              "CodeGen25-7B-multi": 0
              }


df = pd.DataFrame(data).set_index("Models")
df = df.reset_index().rename(columns={"index": "Language"})

temp_df = df.copy()
temp_df = temp_df.apply(pd.to_numeric, errors="coerce")
temp_df[temp_df <= 1] = np.nan

df.insert(1, "Average score", temp_df.mean(axis=1).round(2))
df.insert(2, "Throughput (tokens/s)", [0 for i in range(len(df))])
df.insert(3, "Seq_length", [0 for i in range(len(df))])
df.insert(3, "#languages", [0 for i in range(len(df))])
df["Throughput (tokens/s)"] = df["Models"].map(throughput)

seq_lengths = {model: 8192 if "starcoder" in model.lower() else 2048 for model in df["Models"]}
languages = {}
for model in df["Models"]:
    if "starcoder" or "codegen25" in model.lower():
        languages[model] = "80+"
    if "codegen-16" in model.lower():
        languages[model] = "6"
    if "replit" in model.lower():
        languages[model] = "20"

df["Seq_length"] = df["Models"].map(seq_lengths)
df["#languages"] = df["Models"].map(languages)

# sort with regard to column average
df = df.sort_values(by=["Average score"], ascending=False)