|
import pandas as pd |
|
|
|
|
|
def add_model_readme(df): |
|
|
|
with open("README.md", "r") as f: |
|
lines = f.readlines() |
|
|
|
links = df["Links"].astype(str) |
|
for link in links: |
|
model_id = link.split(".co/")[1] |
|
lines.insert(-1, f"- {model_id}\n") |
|
|
|
with open("README.md", "w") as f: |
|
f.writelines(lines) |
|
|
|
df = pd.read_csv("data/raw_scores.csv") |
|
COLS = df.columns.to_list() |
|
|
|
df.insert(len(COLS), "models_query", df["Models"]) |
|
print(f"all cols {df.columns.to_list()}") |
|
|
|
mean_columns = df.iloc[:,5:-3] |
|
|
|
print("cols", mean_columns.columns.to_list()) |
|
df.insert(len(mean_columns.columns.to_list()), "Average score", mean_columns.mean(axis=1).round(2)) |
|
|
|
|
|
old_size = len(df.columns) |
|
|
|
for col in df.columns[6:-2]: |
|
df[col + " rank"] = df[col].rank(ascending=False) |
|
df[col + " rank"] = len(df) - (df[col + " rank"] - 1) |
|
df["Win Rate"] = df.iloc[:, old_size:].mean(axis=1).round(2) |
|
df = df.drop(df.columns[old_size:-1], axis=1) |
|
df = df[["Models", "Size (B)", "Win Rate"] + df.columns[2:-1].tolist()] |
|
|
|
|
|
df = df.sort_values(by=["Win Rate"], ascending=False) |
|
|
|
|
|
|
|
links = { |
|
"WizardCoder-15B-V1.0": "https://huggingface.co/WizardLM/WizardCoder-15B-V1.0", |
|
"OctoCoder-15B": "https://huggingface.co/bigcode/octocoder", |
|
"OctoGeeX-7B": "https://huggingface.co/bigcode/octogeex", |
|
"StableCode-3B": "https://huggingface.co/stabilityai/stablecode-completion-alpha-3b", |
|
"StarCoder-15B": "https://huggingface.co/bigcode/starcoder", |
|
"StarCoderBase-15B": "https://huggingface.co/bigcode/starcoderbase", |
|
"StarCoderBase-7B": "https://huggingface.co/bigcode/starcoderbase-7b", |
|
"StarCoderBase-3B": "https://huggingface.co/bigcode/starcoderbase-3b", |
|
"StarCoderBase-1.1B": "https://huggingface.co/bigcode/starcoderbase-1b", |
|
"SantaCoder-1.1B": "https://huggingface.co/bigcode/santacoder", |
|
"Replit-2.7B": "https://huggingface.co/replit/replit-code-v1-3b", |
|
"CodeGeex2-6B": "https://huggingface.co/THUDM/codegeex2-6b", |
|
"CodeGen25-7B-multi": "https://huggingface.co/Salesforce/codegen25-7b-multi", |
|
"CodeGen25-7B-mono": "https://huggingface.co/Salesforce/codegen25-7b-mono", |
|
"CodeGen-16B-Multi": "https://huggingface.co/Salesforce/codegen-16B-multi", |
|
"Deci/DeciCoder-1b": "https://huggingface.co/Deci/DeciCoder-1b", |
|
} |
|
codellamas = ['CodeLlama-7b', 'CodeLlama-7b-Python', 'CodeLlama-7b-Instruct', 'CodeLlama-13b', 'CodeLlama-13b-Python', 'CodeLlama-13b-Instruct', 'CodeLlama-34b', 'CodeLlama-34b-Python', 'CodeLlama-34b-Instruct'] |
|
for codellama in codellamas: |
|
links[codellama] = f"https://huggingface.co/codellama/{codellama}-hf" |
|
|
|
df["Links"] = df["Models"].map(links) |
|
|
|
df.insert(0, "T", "🟢") |
|
df.loc[(df["Models"].str.contains("WizardCoder") | df["Models"].str.contains("Octo") | df["Models"].str.contains("Instruct")), "T"] = "🔶" |
|
|
|
print(df.iloc[:5, :-1]) |
|
df.to_csv("data/code_eval_board.csv", index=False) |
|
|