loubnabnl HF staff commited on
Commit
cb10d0f
·
1 Parent(s): 7dcd740

Update src/text_content.py

Browse files
Files changed (1) hide show
  1. src/text_content.py +3 -1
src/text_content.py CHANGED
@@ -9,9 +9,11 @@ The growing number of code models released by the community necessitates a compr
9
 
10
  ### Benchamrks & Prompts
11
  - HumanEval-Python reports the pass@1 on HumanEval; the rest is from MultiPL-E benchmark.
12
- - For all languages, we use the original benchamrk prompts for all models except HumanEval-Python, where we separate base from instruction models. We use the original code completion prompts for HumanEval for all base models, but for Instruction models, we use the Instruction version of HumanEval in [HumanEvalSynthesize](https://huggingface.co/datasets/bigcode/humanevalpack) delimited by the tokens/text recommended by the authors of each model. Figure below shows the example of OctoCoder vs Base HumanEval prompt, you can find the other prompts [here](https://github.com/bigcode-project/bigcode-evaluation-harness/blob/1d5e773a65a764ce091dd3eded78005e9144935e/lm_eval/tasks/humanevalpack.py#L211).
13
  An exception to this is the Phind models. They seem to follow to base prompts better than the instruction versions. Therefore, we use base HumanEval prompts, following the authors' recommendation."
14
 
 
 
15
  <img src="https://huggingface.co/datasets/loubnabnl/repo-images/resolve/main/humaneval_instruct.png" alt="OctoCoder vs Base HumanEval prompt" width="800px">
16
 
17
  ### Evaluation Parameters
 
9
 
10
  ### Benchamrks & Prompts
11
  - HumanEval-Python reports the pass@1 on HumanEval; the rest is from MultiPL-E benchmark.
12
+ - For all languages, we use the original benchamrk prompts for all models except HumanEval-Python, where we separate base from instruction models. We use the original code completion prompts for HumanEval for all base models, but for Instruction models, we use the Instruction version of HumanEval in [HumanEvalSynthesize](https://huggingface.co/datasets/bigcode/humanevalpack) delimited by the tokens/text recommended by the authors of each model.
13
  An exception to this is the Phind models. They seem to follow to base prompts better than the instruction versions. Therefore, we use base HumanEval prompts, following the authors' recommendation."
14
 
15
+ Figure below shows the example of OctoCoder vs Base HumanEval prompt, you can find the other prompts [here](https://github.com/bigcode-project/bigcode-evaluation-harness/blob/1d5e773a65a764ce091dd3eded78005e9144935e/lm_eval/tasks/humanevalpack.py#L211).
16
+
17
  <img src="https://huggingface.co/datasets/loubnabnl/repo-images/resolve/main/humaneval_instruct.png" alt="OctoCoder vs Base HumanEval prompt" width="800px">
18
 
19
  ### Evaluation Parameters