import gradio as gr import pandas as pd import plotly.graph_objects as go df = pd.read_csv("code_eval_board.csv") df = df.sort_values(by=["Average score"], ascending=False) headers = df.columns.to_list() def plot_throughput(bs=1): throughput_column = 'Throughput (tokens/s)' if bs==1 else 'Throughput (tokens/s) bs=50' df['symbol'] = 2 # Triangle df['color'] = '' df.loc[df['Models'].str.contains('StarCoder|SantaCoder'), 'color'] = 'orange' df.loc[df['Models'].str.contains('CodeGen'), 'color'] = 'pink' df.loc[df['Models'].str.contains('Replit'), 'color'] = 'purple' df.loc[df['Models'].str.contains('Wizard'), 'color'] = '#00b3b3' df.loc[df['Models'].str.contains('CodeGeeX'), 'color'] = '#00cc00' fig = go.Figure() for i in df.index: fig.add_trace(go.Scatter( x=[df.loc[i, throughput_column]], y=[df.loc[i, 'Average score']], mode='markers', marker=dict( size=[df.loc[i, 'Size (B)'] + 10], color=df.loc[i, 'color'], symbol=df.loc[i, 'symbol'] ), name=df.loc[i, 'Models'], hovertemplate = '%{text}

' + f'{throughput_column}: %{{x}}
'+ 'Average Score: %{y}
' + 'Peak Memory (MB): ' + str(df.loc[i, 'Peak Memory (MB)']) + '
' + 'Human Eval (Python): ' + str(df.loc[i, 'humaneval-python']), text=[df.loc[i, 'Models']], showlegend=True )) fig.update_layout( autosize=False, width=700, height=600, title=f'Average Score Vs Throughput (A100-80GB, Float16, Batch Size {bs})', xaxis_title=f'{throughput_column}', yaxis_title='Average Code Score', ) return fig demo = gr.Blocks() with demo: with gr.Row(): gr.Markdown( """

⭐ Multilingual Code Models Evaluation

\
\

We compare performance of base multilingual code generation models on HumanEval benchmark and MultiPL-E. Following the 🤗 Open LLM-Perf Leaderboard 🏋️, we also measure throughput and provide\ information about the models. We only compare pre-trained multilingual code models, that people can start from as base models for their trainings.

""" ) with gr.Column(): with gr.Tabs(elem_classes="A100-tabs") as A100_tabs: with gr.TabItem("🔍 Evaluation table", id=0): leaderboard_df = gr.components.Dataframe( value=df, headers=headers, datatype=["str" for _ in range(len(headers))] ) with gr.TabItem("📊 Performance Plot", id=1): with gr.Row(): bs_1_plot = gr.components.Plot( value=plot_throughput(bs=1), elem_id="bs1-plot", show_label=False, ) bs_50_plt = gr.components.Plot( value=plot_throughput(bs=50), elem_id="bs50-plot", show_label=False, ) with gr.Row(): gr.Markdown( """Notes: """ ) demo.launch()