File size: 8,590 Bytes
f8f7ea2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import pdb
from pathlib import Path
import sys

PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute()
sys.path.insert(0, str(PROJECT_ROOT))
import os
import torch
import numpy as np
import cv2
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from datasets.simple_extractor_dataset import SimpleFolderDataset
from utils.transforms import transform_logits
from tqdm import tqdm
from PIL import Image


def get_palette(num_cls):
    """ Returns the color map for visualizing the segmentation mask.

    Args:

        num_cls: Number of classes

    Returns:

        The color map

    """
    n = num_cls
    palette = [0] * (n * 3)
    for j in range(0, n):
        lab = j
        palette[j * 3 + 0] = 0
        palette[j * 3 + 1] = 0
        palette[j * 3 + 2] = 0
        i = 0
        while lab:
            palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
            palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
            palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
            i += 1
            lab >>= 3
    return palette


def delete_irregular(logits_result):
    parsing_result = np.argmax(logits_result, axis=2)
    upper_cloth = np.where(parsing_result == 4, 255, 0)
    contours, hierarchy = cv2.findContours(upper_cloth.astype(np.uint8),
                                           cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1)
    area = []
    for i in range(len(contours)):
        a = cv2.contourArea(contours[i], True)
        area.append(abs(a))
    if len(area) != 0:
        top = area.index(max(area))
        M = cv2.moments(contours[top])
        cY = int(M["m01"] / M["m00"])

    dresses = np.where(parsing_result == 7, 255, 0)
    contours_dress, hierarchy_dress = cv2.findContours(dresses.astype(np.uint8),
                                                       cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1)
    area_dress = []
    for j in range(len(contours_dress)):
        a_d = cv2.contourArea(contours_dress[j], True)
        area_dress.append(abs(a_d))
    if len(area_dress) != 0:
        top_dress = area_dress.index(max(area_dress))
        M_dress = cv2.moments(contours_dress[top_dress])
        cY_dress = int(M_dress["m01"] / M_dress["m00"])
    wear_type = "dresses"
    if len(area) != 0:
        if len(area_dress) != 0 and cY_dress > cY:
            irregular_list = np.array([4, 5, 6])
            logits_result[:, :, irregular_list] = -1
        else:
            irregular_list = np.array([5, 6, 7, 8, 9, 10, 12, 13])
            logits_result[:cY, :, irregular_list] = -1
            wear_type = "cloth_pant"
        parsing_result = np.argmax(logits_result, axis=2)
    # pad border
    parsing_result = np.pad(parsing_result, pad_width=1, mode='constant', constant_values=0)
    return parsing_result, wear_type



def hole_fill(img):
    img_copy = img.copy()
    mask = np.zeros((img.shape[0] + 2, img.shape[1] + 2), dtype=np.uint8)
    cv2.floodFill(img, mask, (0, 0), 255)
    img_inverse = cv2.bitwise_not(img)
    dst = cv2.bitwise_or(img_copy, img_inverse)
    return dst

def refine_mask(mask):
    contours, hierarchy = cv2.findContours(mask.astype(np.uint8),
                                           cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1)
    area = []
    for j in range(len(contours)):
        a_d = cv2.contourArea(contours[j], True)
        area.append(abs(a_d))
    refine_mask = np.zeros_like(mask).astype(np.uint8)
    if len(area) != 0:
        i = area.index(max(area))
        cv2.drawContours(refine_mask, contours, i, color=255, thickness=-1)
        # keep large area in skin case
        for j in range(len(area)):
          if j != i and area[i] > 2000:
             cv2.drawContours(refine_mask, contours, j, color=255, thickness=-1)
    return refine_mask

def refine_hole(parsing_result_filled, parsing_result, arm_mask):
    filled_hole = cv2.bitwise_and(np.where(parsing_result_filled == 4, 255, 0),
                                  np.where(parsing_result != 4, 255, 0)) - arm_mask * 255
    contours, hierarchy = cv2.findContours(filled_hole, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1)
    refine_hole_mask = np.zeros_like(parsing_result).astype(np.uint8)
    for i in range(len(contours)):
        a = cv2.contourArea(contours[i], True)
        # keep hole > 2000 pixels
        if abs(a) > 2000:
            cv2.drawContours(refine_hole_mask, contours, i, color=255, thickness=-1)
    return refine_hole_mask + arm_mask

def onnx_inference(session, lip_session, input_dir):
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229])
    ])
    dataset = SimpleFolderDataset(root=input_dir, input_size=[512, 512], transform=transform)
    dataloader = DataLoader(dataset)
    with torch.no_grad():
        for _, batch in enumerate(tqdm(dataloader)):
            image, meta = batch
            c = meta['center'].numpy()[0]
            s = meta['scale'].numpy()[0]
            w = meta['width'].numpy()[0]
            h = meta['height'].numpy()[0]
            output = session.run(None, {"input.1": image.numpy().astype(np.float32)})
            upsample = torch.nn.Upsample(size=[512, 512], mode='bilinear', align_corners=True)
            upsample_output = upsample(torch.from_numpy(output[1][0]).unsqueeze(0))
            upsample_output = upsample_output.squeeze()
            upsample_output = upsample_output.permute(1, 2, 0)  # CHW -> HWC
            logits_result = transform_logits(upsample_output.data.cpu().numpy(), c, s, w, h, input_size=[512, 512])
            parsing_result = np.argmax(logits_result, axis=2)
            parsing_result = np.pad(parsing_result, pad_width=1, mode='constant', constant_values=0)
            # try holefilling the clothes part
            arm_mask = (parsing_result == 14).astype(np.float32) \
                       + (parsing_result == 15).astype(np.float32)
            upper_cloth_mask = (parsing_result == 4).astype(np.float32) + arm_mask
            img = np.where(upper_cloth_mask, 255, 0)
            dst = hole_fill(img.astype(np.uint8))
            parsing_result_filled = dst / 255 * 4
            parsing_result_woarm = np.where(parsing_result_filled == 4, parsing_result_filled, parsing_result)
            # add back arm and refined hole between arm and cloth
            refine_hole_mask = refine_hole(parsing_result_filled.astype(np.uint8), parsing_result.astype(np.uint8),
                                           arm_mask.astype(np.uint8))
            parsing_result = np.where(refine_hole_mask, parsing_result, parsing_result_woarm)
            # remove padding
            parsing_result = parsing_result[1:-1, 1:-1]

        dataset_lip = SimpleFolderDataset(root=input_dir, input_size=[473, 473], transform=transform)
        dataloader_lip = DataLoader(dataset_lip)
        with torch.no_grad():
            for _, batch in enumerate(tqdm(dataloader_lip)):
                image, meta = batch
                c = meta['center'].numpy()[0]
                s = meta['scale'].numpy()[0]
                w = meta['width'].numpy()[0]
                h = meta['height'].numpy()[0]

                output_lip = lip_session.run(None, {"input.1": image.numpy().astype(np.float32)})
                upsample = torch.nn.Upsample(size=[473, 473], mode='bilinear', align_corners=True)
                upsample_output_lip = upsample(torch.from_numpy(output_lip[1][0]).unsqueeze(0))
                upsample_output_lip = upsample_output_lip.squeeze()
                upsample_output_lip = upsample_output_lip.permute(1, 2, 0)  # CHW -> HWC
                logits_result_lip = transform_logits(upsample_output_lip.data.cpu().numpy(), c, s, w, h,
                                                     input_size=[473, 473])
                parsing_result_lip = np.argmax(logits_result_lip, axis=2)
    # add neck parsing result
    neck_mask = np.logical_and(np.logical_not((parsing_result_lip == 13).astype(np.float32)),
                               (parsing_result == 11).astype(np.float32))
    parsing_result = np.where(neck_mask, 18, parsing_result)
    palette = get_palette(19)
    output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8))
    output_img.putpalette(palette)
    face_mask = torch.from_numpy((parsing_result == 11).astype(np.float32))

    return output_img, face_mask