File size: 98,185 Bytes
211b491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import numpy as np
import PIL.Image
import torch
from transformers import (
    CLIPImageProcessor,
    CLIPTextModel,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    CLIPVisionModelWithProjection,
)

from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import (
    FromSingleFileMixin,
    IPAdapterMixin,
    StableDiffusionXLLoraLoaderMixin,
    TextualInversionLoaderMixin,
)
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
from diffusers.models.attention_processor import (
    AttnProcessor2_0,
    FusedAttnProcessor2_0,
    LoRAAttnProcessor2_0,
    LoRAXFormersAttnProcessor,
    XFormersAttnProcessor,
)
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
    USE_PEFT_BACKEND,
    deprecate,
    is_invisible_watermark_available,
    is_torch_xla_available,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline



if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


EXAMPLE_DOC_STRING = """

    Examples:

        ```py

        >>> import torch

        >>> from diffusers import StableDiffusionXLInpaintPipeline

        >>> from diffusers.utils import load_image



        >>> pipe = StableDiffusionXLInpaintPipeline.from_pretrained(

        ...     "stabilityai/stable-diffusion-xl-base-1.0",

        ...     torch_dtype=torch.float16,

        ...     variant="fp16",

        ...     use_safetensors=True,

        ... )

        >>> pipe.to("cuda")



        >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"

        >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"



        >>> init_image = load_image(img_url).convert("RGB")

        >>> mask_image = load_image(mask_url).convert("RGB")



        >>> prompt = "A majestic tiger sitting on a bench"

        >>> image = pipe(

        ...     prompt=prompt, image=init_image, mask_image=mask_image, num_inference_steps=50, strength=0.80

        ... ).images[0]

        ```

"""


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """

    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and

    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4

    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


def mask_pil_to_torch(mask, height, width):
    # preprocess mask
    if isinstance(mask, (PIL.Image.Image, np.ndarray)):
        mask = [mask]

    if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
        mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
        mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
        mask = mask.astype(np.float32) / 255.0
    elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
        mask = np.concatenate([m[None, None, :] for m in mask], axis=0)

    mask = torch.from_numpy(mask)
    return mask


def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool = False):
    """

    Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be

    converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the

    ``image`` and ``1`` for the ``mask``.



    The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be

    binarized (``mask > 0.5``) and cast to ``torch.float32`` too.



    Args:

        image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.

            It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``

            ``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.

        mask (_type_): The mask to apply to the image, i.e. regions to inpaint.

            It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``

            ``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.





    Raises:

        ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask

        should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.

        TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not

            (ot the other way around).



    Returns:

        tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4

            dimensions: ``batch x channels x height x width``.

    """

    # checkpoint. TOD(Yiyi) - need to clean this up later
    deprecation_message = "The prepare_mask_and_masked_image method is deprecated and will be removed in a future version. Please use VaeImageProcessor.preprocess instead"
    deprecate(
        "prepare_mask_and_masked_image",
        "0.30.0",
        deprecation_message,
    )
    if image is None:
        raise ValueError("`image` input cannot be undefined.")

    if mask is None:
        raise ValueError("`mask_image` input cannot be undefined.")

    if isinstance(image, torch.Tensor):
        if not isinstance(mask, torch.Tensor):
            mask = mask_pil_to_torch(mask, height, width)

        if image.ndim == 3:
            image = image.unsqueeze(0)

        # Batch and add channel dim for single mask
        if mask.ndim == 2:
            mask = mask.unsqueeze(0).unsqueeze(0)

        # Batch single mask or add channel dim
        if mask.ndim == 3:
            # Single batched mask, no channel dim or single mask not batched but channel dim
            if mask.shape[0] == 1:
                mask = mask.unsqueeze(0)

            # Batched masks no channel dim
            else:
                mask = mask.unsqueeze(1)

        assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
        # assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
        assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"

        # Check image is in [-1, 1]
        # if image.min() < -1 or image.max() > 1:
        #    raise ValueError("Image should be in [-1, 1] range")

        # Check mask is in [0, 1]
        if mask.min() < 0 or mask.max() > 1:
            raise ValueError("Mask should be in [0, 1] range")

        # Binarize mask
        mask[mask < 0.5] = 0
        mask[mask >= 0.5] = 1

        # Image as float32
        image = image.to(dtype=torch.float32)
    elif isinstance(mask, torch.Tensor):
        raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
    else:
        # preprocess image
        if isinstance(image, (PIL.Image.Image, np.ndarray)):
            image = [image]
        if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
            # resize all images w.r.t passed height an width
            image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
            image = [np.array(i.convert("RGB"))[None, :] for i in image]
            image = np.concatenate(image, axis=0)
        elif isinstance(image, list) and isinstance(image[0], np.ndarray):
            image = np.concatenate([i[None, :] for i in image], axis=0)

        image = image.transpose(0, 3, 1, 2)
        image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0

        mask = mask_pil_to_torch(mask, height, width)
        mask[mask < 0.5] = 0
        mask[mask >= 0.5] = 1

    if image.shape[1] == 4:
        # images are in latent space and thus can't
        # be masked set masked_image to None
        # we assume that the checkpoint is not an inpainting
        # checkpoint. TOD(Yiyi) - need to clean this up later
        masked_image = None
    else:
        masked_image = image * (mask < 0.5)

    # n.b. ensure backwards compatibility as old function does not return image
    if return_image:
        return mask, masked_image, image

    return mask, masked_image


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(

    encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"

):
    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
        return encoder_output.latent_dist.sample(generator)
    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
        return encoder_output.latent_dist.mode()
    elif hasattr(encoder_output, "latents"):
        return encoder_output.latents
    else:
        raise AttributeError("Could not access latents of provided encoder_output")


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(

    scheduler,

    num_inference_steps: Optional[int] = None,

    device: Optional[Union[str, torch.device]] = None,

    timesteps: Optional[List[int]] = None,

    **kwargs,

):
    """

    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles

    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.



    Args:

        scheduler (`SchedulerMixin`):

            The scheduler to get timesteps from.

        num_inference_steps (`int`):

            The number of diffusion steps used when generating samples with a pre-trained model. If used,

            `timesteps` must be `None`.

        device (`str` or `torch.device`, *optional*):

            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.

        timesteps (`List[int]`, *optional*):

                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default

                timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`

                must be `None`.



    Returns:

        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the

        second element is the number of inference steps.

    """
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


class StableDiffusionXLInpaintPipeline(
    DiffusionPipeline,
    TextualInversionLoaderMixin,
    StableDiffusionXLLoraLoaderMixin,
    FromSingleFileMixin,
    IPAdapterMixin,
):
    r"""

    Pipeline for text-to-image generation using Stable Diffusion XL.



    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the

    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)



    The pipeline also inherits the following loading methods:

        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings

        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files

        - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights

        - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights

        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters



    Args:

        vae ([`AutoencoderKL`]):

            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.

        text_encoder ([`CLIPTextModel`]):

            Frozen text-encoder. Stable Diffusion XL uses the text portion of

            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically

            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.

        text_encoder_2 ([` CLIPTextModelWithProjection`]):

            Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of

            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),

            specifically the

            [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)

            variant.

        tokenizer (`CLIPTokenizer`):

            Tokenizer of class

            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).

        tokenizer_2 (`CLIPTokenizer`):

            Second Tokenizer of class

            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).

        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.

        scheduler ([`SchedulerMixin`]):

            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of

            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].

        requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):

            Whether the `unet` requires a aesthetic_score condition to be passed during inference. Also see the config

            of `stabilityai/stable-diffusion-xl-refiner-1-0`.

        force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):

            Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of

            `stabilityai/stable-diffusion-xl-base-1-0`.

        add_watermarker (`bool`, *optional*):

            Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to

            watermark output images. If not defined, it will default to True if the package is installed, otherwise no

            watermarker will be used.

    """

    model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"

    _optional_components = [
        "tokenizer",
        "tokenizer_2",
        "text_encoder",
        "text_encoder_2",
        "image_encoder",
        "feature_extractor",
    ]
    _callback_tensor_inputs = [
        "latents",
        "prompt_embeds",
        "negative_prompt_embeds",
        "add_text_embeds",
        "add_time_ids",
        "negative_pooled_prompt_embeds",
        "add_neg_time_ids",
        "mask",
        "masked_image_latents",
    ]

    def __init__(

        self,

        vae: AutoencoderKL,

        text_encoder: CLIPTextModel,

        text_encoder_2: CLIPTextModelWithProjection,

        tokenizer: CLIPTokenizer,

        tokenizer_2: CLIPTokenizer,

        unet: UNet2DConditionModel,

        scheduler: KarrasDiffusionSchedulers,

        image_encoder: CLIPVisionModelWithProjection = None,

        feature_extractor: CLIPImageProcessor = None,

        requires_aesthetics_score: bool = False,

        force_zeros_for_empty_prompt: bool = True,

    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            unet=unet,
            image_encoder=image_encoder,
            feature_extractor=feature_extractor,
            scheduler=scheduler,
        )
        self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
        self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.mask_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
        )



    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
    def enable_vae_slicing(self):
        r"""

        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to

        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.

        """
        self.vae.enable_slicing()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
    def disable_vae_slicing(self):
        r"""

        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to

        computing decoding in one step.

        """
        self.vae.disable_slicing()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
    def enable_vae_tiling(self):
        r"""

        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to

        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow

        processing larger images.

        """
        self.vae.enable_tiling()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
    def disable_vae_tiling(self):
        r"""

        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to

        computing decoding in one step.

        """
        self.vae.disable_tiling()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
    def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
        dtype = next(self.image_encoder.parameters()).dtype
        # print(image.shape)
        if not isinstance(image, torch.Tensor):
            image = self.feature_extractor(image, return_tensors="pt").pixel_values

        image = image.to(device=device, dtype=dtype)
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(
                torch.zeros_like(image), output_hidden_states=True
            ).hidden_states[-2]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image).image_embeds
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = torch.zeros_like(image_embeds)

            return image_embeds, uncond_image_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
    def prepare_ip_adapter_image_embeds(self, ip_adapter_image, device, num_images_per_prompt):
        # if not isinstance(ip_adapter_image, list):
        #     ip_adapter_image = [ip_adapter_image]

        # if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
        #     raise ValueError(
        #         f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
        #     )
        output_hidden_state = not isinstance(self.unet.encoder_hid_proj, ImageProjection)
        # print(output_hidden_state)
        image_embeds, negative_image_embeds = self.encode_image(
            ip_adapter_image, device, 1, output_hidden_state
        )
        # print(single_image_embeds.shape)
        # single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
        # single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0)
        # print(single_image_embeds.shape)
        if self.do_classifier_free_guidance:
            image_embeds = torch.cat([negative_image_embeds, image_embeds])
            image_embeds = image_embeds.to(device)


        return image_embeds


    # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
    def encode_prompt(

        self,

        prompt: str,

        prompt_2: Optional[str] = None,

        device: Optional[torch.device] = None,

        num_images_per_prompt: int = 1,

        do_classifier_free_guidance: bool = True,

        negative_prompt: Optional[str] = None,

        negative_prompt_2: Optional[str] = None,

        prompt_embeds: Optional[torch.FloatTensor] = None,

        negative_prompt_embeds: Optional[torch.FloatTensor] = None,

        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,

        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,

        lora_scale: Optional[float] = None,

        clip_skip: Optional[int] = None,

    ):
        r"""

        Encodes the prompt into text encoder hidden states.



        Args:

            prompt (`str` or `List[str]`, *optional*):

                prompt to be encoded

            prompt_2 (`str` or `List[str]`, *optional*):

                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is

                used in both text-encoders

            device: (`torch.device`):

                torch device

            num_images_per_prompt (`int`):

                number of images that should be generated per prompt

            do_classifier_free_guidance (`bool`):

                whether to use classifier free guidance or not

            negative_prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts not to guide the image generation. If not defined, one has to pass

                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is

                less than `1`).

            negative_prompt_2 (`str` or `List[str]`, *optional*):

                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and

                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders

            prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not

                provided, text embeddings will be generated from `prompt` input argument.

            negative_prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt

                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input

                argument.

            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.

                If not provided, pooled text embeddings will be generated from `prompt` input argument.

            negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt

                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`

                input argument.

            lora_scale (`float`, *optional*):

                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.

            clip_skip (`int`, *optional*):

                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that

                the output of the pre-final layer will be used for computing the prompt embeddings.

        """
        device = device or self._execution_device

        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if self.text_encoder is not None:
                if not USE_PEFT_BACKEND:
                    adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
                else:
                    scale_lora_layers(self.text_encoder, lora_scale)

            if self.text_encoder_2 is not None:
                if not USE_PEFT_BACKEND:
                    adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
                else:
                    scale_lora_layers(self.text_encoder_2, lora_scale)

        prompt = [prompt] if isinstance(prompt, str) else prompt

        if prompt is not None:
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # Define tokenizers and text encoders
        tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
        text_encoders = (
            [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
        )

        if prompt_embeds is None:
            prompt_2 = prompt_2 or prompt
            prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2

            # textual inversion: procecss multi-vector tokens if necessary
            prompt_embeds_list = []
            prompts = [prompt, prompt_2]
            for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
                if isinstance(self, TextualInversionLoaderMixin):
                    prompt = self.maybe_convert_prompt(prompt, tokenizer)

                text_inputs = tokenizer(
                    prompt,
                    padding="max_length",
                    max_length=tokenizer.model_max_length,
                    truncation=True,
                    return_tensors="pt",
                )

                text_input_ids = text_inputs.input_ids
                untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

                if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                    text_input_ids, untruncated_ids
                ):
                    removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
                    logger.warning(
                        "The following part of your input was truncated because CLIP can only handle sequences up to"
                        f" {tokenizer.model_max_length} tokens: {removed_text}"
                    )

                prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)

                # We are only ALWAYS interested in the pooled output of the final text encoder
                pooled_prompt_embeds = prompt_embeds[0]
                if clip_skip is None:
                    prompt_embeds = prompt_embeds.hidden_states[-2]
                else:
                    # "2" because SDXL always indexes from the penultimate layer.
                    prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]

                prompt_embeds_list.append(prompt_embeds)

            prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)

        # get unconditional embeddings for classifier free guidance
        zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
        if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
            negative_prompt_embeds = torch.zeros_like(prompt_embeds)
            negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
        elif do_classifier_free_guidance and negative_prompt_embeds is None:
            negative_prompt = negative_prompt or ""
            negative_prompt_2 = negative_prompt_2 or negative_prompt

            # normalize str to list
            negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
            negative_prompt_2 = (
                batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
            )

            uncond_tokens: List[str]
            if prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = [negative_prompt, negative_prompt_2]

            negative_prompt_embeds_list = []
            for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
                if isinstance(self, TextualInversionLoaderMixin):
                    negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)

                max_length = prompt_embeds.shape[1]
                uncond_input = tokenizer(
                    negative_prompt,
                    padding="max_length",
                    max_length=max_length,
                    truncation=True,
                    return_tensors="pt",
                )

                negative_prompt_embeds = text_encoder(
                    uncond_input.input_ids.to(device),
                    output_hidden_states=True,
                )
                # We are only ALWAYS interested in the pooled output of the final text encoder
                negative_pooled_prompt_embeds = negative_prompt_embeds[0]
                negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]

                negative_prompt_embeds_list.append(negative_prompt_embeds)

            negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)

        if self.text_encoder_2 is not None:
            prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
        else:
            prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            if self.text_encoder_2 is not None:
                negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
            else:
                negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
            bs_embed * num_images_per_prompt, -1
        )
        if do_classifier_free_guidance:
            negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
                bs_embed * num_images_per_prompt, -1
            )

        if self.text_encoder is not None:
            if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        if self.text_encoder_2 is not None:
            if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder_2, lora_scale)

        return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (Ξ·) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to Ξ· in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(

        self,

        prompt,

        prompt_2,

        image,

        mask_image,

        height,

        width,

        strength,

        callback_steps,

        output_type,

        negative_prompt=None,

        negative_prompt_2=None,

        prompt_embeds=None,

        negative_prompt_embeds=None,

        callback_on_step_end_tensor_inputs=None,

        padding_mask_crop=None,

    ):
        if strength < 0 or strength > 1:
            raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")

        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt_2 is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
        elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
            raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )
        elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )
        if padding_mask_crop is not None:
            if not isinstance(image, PIL.Image.Image):
                raise ValueError(
                    f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
                )
            if not isinstance(mask_image, PIL.Image.Image):
                raise ValueError(
                    f"The mask image should be a PIL image when inpainting mask crop, but is of type"
                    f" {type(mask_image)}."
                )
            if output_type != "pil":
                raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")

    def prepare_latents(

        self,

        batch_size,

        num_channels_latents,

        height,

        width,

        dtype,

        device,

        generator,

        latents=None,

        image=None,

        timestep=None,

        is_strength_max=True,

        add_noise=True,

        return_noise=False,

        return_image_latents=False,

    ):
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if (image is None or timestep is None) and not is_strength_max:
            raise ValueError(
                "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
                "However, either the image or the noise timestep has not been provided."
            )

        if image.shape[1] == 4:
            image_latents = image.to(device=device, dtype=dtype)
            image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
        elif return_image_latents or (latents is None and not is_strength_max):
            image = image.to(device=device, dtype=dtype)
            image_latents = self._encode_vae_image(image=image, generator=generator)
            image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)

        if latents is None and add_noise:
            noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
            # if strength is 1. then initialise the latents to noise, else initial to image + noise
            latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
            # if pure noise then scale the initial latents by the  Scheduler's init sigma
            latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
        elif add_noise:
            noise = latents.to(device)
            latents = noise * self.scheduler.init_noise_sigma
        else:
            noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
            latents = image_latents.to(device)

        outputs = (latents,)

        if return_noise:
            outputs += (noise,)

        if return_image_latents:
            outputs += (image_latents,)

        return outputs

    def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
        dtype = image.dtype
        if self.vae.config.force_upcast:
            image = image.float()
            self.vae.to(dtype=torch.float32)

        if isinstance(generator, list):
            image_latents = [
                retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
                for i in range(image.shape[0])
            ]
            image_latents = torch.cat(image_latents, dim=0)
        else:
            image_latents = retrieve_latents(self.vae.encode(image), generator=generator)

        if self.vae.config.force_upcast:
            self.vae.to(dtype)

        image_latents = image_latents.to(dtype)
        image_latents = self.vae.config.scaling_factor * image_latents

        return image_latents

    def prepare_mask_latents(

        self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance

    ):
        # resize the mask to latents shape as we concatenate the mask to the latents
        # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
        # and half precision
        mask = torch.nn.functional.interpolate(
            mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
        )
        mask = mask.to(device=device, dtype=dtype)

        # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
        if mask.shape[0] < batch_size:
            if not batch_size % mask.shape[0] == 0:
                raise ValueError(
                    "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
                    f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
                    " of masks that you pass is divisible by the total requested batch size."
                )
            mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)

        mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
        if masked_image is not None and masked_image.shape[1] == 4:
            masked_image_latents = masked_image
        else:
            masked_image_latents = None

        if masked_image is not None:
            if masked_image_latents is None:
                masked_image = masked_image.to(device=device, dtype=dtype)
                masked_image_latents = self._encode_vae_image(masked_image, generator=generator)

            if masked_image_latents.shape[0] < batch_size:
                if not batch_size % masked_image_latents.shape[0] == 0:
                    raise ValueError(
                        "The passed images and the required batch size don't match. Images are supposed to be duplicated"
                        f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
                        " Make sure the number of images that you pass is divisible by the total requested batch size."
                    )
                masked_image_latents = masked_image_latents.repeat(
                    batch_size // masked_image_latents.shape[0], 1, 1, 1
                )

            masked_image_latents = (
                torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
            )

            # aligning device to prevent device errors when concating it with the latent model input
            masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)

        return mask, masked_image_latents

    # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.get_timesteps
    def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
        # get the original timestep using init_timestep
        if denoising_start is None:
            init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
            t_start = max(num_inference_steps - init_timestep, 0)
        else:
            t_start = 0

        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]

        # Strength is irrelevant if we directly request a timestep to start at;
        # that is, strength is determined by the denoising_start instead.
        if denoising_start is not None:
            discrete_timestep_cutoff = int(
                round(
                    self.scheduler.config.num_train_timesteps
                    - (denoising_start * self.scheduler.config.num_train_timesteps)
                )
            )

            num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
            if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
                # if the scheduler is a 2nd order scheduler we might have to do +1
                # because `num_inference_steps` might be even given that every timestep
                # (except the highest one) is duplicated. If `num_inference_steps` is even it would
                # mean that we cut the timesteps in the middle of the denoising step
                # (between 1st and 2nd devirative) which leads to incorrect results. By adding 1
                # we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
                num_inference_steps = num_inference_steps + 1

            # because t_n+1 >= t_n, we slice the timesteps starting from the end
            timesteps = timesteps[-num_inference_steps:]
            return timesteps, num_inference_steps

        return timesteps, num_inference_steps - t_start

    # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids
    def _get_add_time_ids(

        self,

        original_size,

        crops_coords_top_left,

        target_size,

        aesthetic_score,

        negative_aesthetic_score,

        negative_original_size,

        negative_crops_coords_top_left,

        negative_target_size,

        dtype,

        text_encoder_projection_dim=None,

    ):
        if self.config.requires_aesthetics_score:
            add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
            add_neg_time_ids = list(
                negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)
            )
        else:
            add_time_ids = list(original_size + crops_coords_top_left + target_size)
            add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size)

        passed_add_embed_dim = (
            self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
        )
        expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features

        if (
            expected_add_embed_dim > passed_add_embed_dim
            and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
        ):
            raise ValueError(
                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
            )
        elif (
            expected_add_embed_dim < passed_add_embed_dim
            and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
        ):
            raise ValueError(
                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
            )
        elif expected_add_embed_dim != passed_add_embed_dim:
            raise ValueError(
                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
            )

        add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
        add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)

        return add_time_ids, add_neg_time_ids

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
    def upcast_vae(self):
        dtype = self.vae.dtype
        self.vae.to(dtype=torch.float32)
        use_torch_2_0_or_xformers = isinstance(
            self.vae.decoder.mid_block.attentions[0].processor,
            (
                AttnProcessor2_0,
                XFormersAttnProcessor,
                LoRAXFormersAttnProcessor,
                LoRAAttnProcessor2_0,
            ),
        )
        # if xformers or torch_2_0 is used attention block does not need
        # to be in float32 which can save lots of memory
        if use_torch_2_0_or_xformers:
            self.vae.post_quant_conv.to(dtype)
            self.vae.decoder.conv_in.to(dtype)
            self.vae.decoder.mid_block.to(dtype)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
        r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.



        The suffixes after the scaling factors represent the stages where they are being applied.



        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values

        that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.



        Args:

            s1 (`float`):

                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to

                mitigate "oversmoothing effect" in the enhanced denoising process.

            s2 (`float`):

                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to

                mitigate "oversmoothing effect" in the enhanced denoising process.

            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.

            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.

        """
        if not hasattr(self, "unet"):
            raise ValueError("The pipeline must have `unet` for using FreeU.")
        self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
    def disable_freeu(self):
        """Disables the FreeU mechanism if enabled."""
        self.unet.disable_freeu()

    # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.fuse_qkv_projections
    def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
        """

        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,

        key, value) are fused. For cross-attention modules, key and value projection matrices are fused.



        <Tip warning={true}>



        This API is πŸ§ͺ experimental.



        </Tip>



        Args:

            unet (`bool`, defaults to `True`): To apply fusion on the UNet.

            vae (`bool`, defaults to `True`): To apply fusion on the VAE.

        """
        self.fusing_unet = False
        self.fusing_vae = False

        if unet:
            self.fusing_unet = True
            self.unet.fuse_qkv_projections()
            self.unet.set_attn_processor(FusedAttnProcessor2_0())

        if vae:
            if not isinstance(self.vae, AutoencoderKL):
                raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")

            self.fusing_vae = True
            self.vae.fuse_qkv_projections()
            self.vae.set_attn_processor(FusedAttnProcessor2_0())

    # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.unfuse_qkv_projections
    def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
        """Disable QKV projection fusion if enabled.



        <Tip warning={true}>



        This API is πŸ§ͺ experimental.



        </Tip>



        Args:

            unet (`bool`, defaults to `True`): To apply fusion on the UNet.

            vae (`bool`, defaults to `True`): To apply fusion on the VAE.



        """
        if unet:
            if not self.fusing_unet:
                logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
            else:
                self.unet.unfuse_qkv_projections()
                self.fusing_unet = False

        if vae:
            if not self.fusing_vae:
                logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
            else:
                self.vae.unfuse_qkv_projections()
                self.fusing_vae = False

    # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
    def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
        """

        See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298



        Args:

            timesteps (`torch.Tensor`):

                generate embedding vectors at these timesteps

            embedding_dim (`int`, *optional*, defaults to 512):

                dimension of the embeddings to generate

            dtype:

                data type of the generated embeddings



        Returns:

            `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`

        """
        assert len(w.shape) == 1
        w = w * 1000.0

        half_dim = embedding_dim // 2
        emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
        emb = w.to(dtype)[:, None] * emb[None, :]
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
        if embedding_dim % 2 == 1:  # zero pad
            emb = torch.nn.functional.pad(emb, (0, 1))
        assert emb.shape == (w.shape[0], embedding_dim)
        return emb

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def guidance_rescale(self):
        return self._guidance_rescale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def denoising_end(self):
        return self._denoising_end

    @property
    def denoising_start(self):
        return self._denoising_start

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(

        self,

        prompt: Union[str, List[str]] = None,

        prompt_2: Optional[Union[str, List[str]]] = None,

        image: PipelineImageInput = None,

        mask_image: PipelineImageInput = None,

        masked_image_latents: torch.FloatTensor = None,

        height: Optional[int] = None,

        width: Optional[int] = None,

        padding_mask_crop: Optional[int] = None,

        strength: float = 0.9999,

        num_inference_steps: int = 50,

        timesteps: List[int] = None,

        denoising_start: Optional[float] = None,

        denoising_end: Optional[float] = None,

        guidance_scale: float = 7.5,

        negative_prompt: Optional[Union[str, List[str]]] = None,

        negative_prompt_2: Optional[Union[str, List[str]]] = None,

        num_images_per_prompt: Optional[int] = 1,

        eta: float = 0.0,

        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,

        latents: Optional[torch.FloatTensor] = None,

        prompt_embeds: Optional[torch.FloatTensor] = None,

        negative_prompt_embeds: Optional[torch.FloatTensor] = None,

        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,

        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,

        ip_adapter_image: Optional[PipelineImageInput] = None,

        output_type: Optional[str] = "pil",

        cloth =None,

        pose_img = None,

        text_embeds_cloth=None,

        return_dict: bool = True,

        cross_attention_kwargs: Optional[Dict[str, Any]] = None,

        guidance_rescale: float = 0.0,

        original_size: Tuple[int, int] = None,

        crops_coords_top_left: Tuple[int, int] = (0, 0),

        target_size: Tuple[int, int] = None,

        negative_original_size: Optional[Tuple[int, int]] = None,

        negative_crops_coords_top_left: Tuple[int, int] = (0, 0),

        negative_target_size: Optional[Tuple[int, int]] = None,

        aesthetic_score: float = 6.0,

        negative_aesthetic_score: float = 2.5,

        clip_skip: Optional[int] = None,

        pooled_prompt_embeds_c=None,

        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,

        callback_on_step_end_tensor_inputs: List[str] = ["latents"],

        **kwargs,

    ):
        r"""

        Function invoked when calling the pipeline for generation.



        Args:

            prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.

                instead.

            prompt_2 (`str` or `List[str]`, *optional*):

                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is

                used in both text-encoders

            image (`PIL.Image.Image`):

                `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will

                be masked out with `mask_image` and repainted according to `prompt`.

            mask_image (`PIL.Image.Image`):

                `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be

                repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted

                to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)

                instead of 3, so the expected shape would be `(B, H, W, 1)`.

            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):

                The height in pixels of the generated image. This is set to 1024 by default for the best results.

                Anything below 512 pixels won't work well for

                [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)

                and checkpoints that are not specifically fine-tuned on low resolutions.

            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):

                The width in pixels of the generated image. This is set to 1024 by default for the best results.

                Anything below 512 pixels won't work well for

                [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)

                and checkpoints that are not specifically fine-tuned on low resolutions.

            padding_mask_crop (`int`, *optional*, defaults to `None`):

                The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to image and mask_image. If

                `padding_mask_crop` is not `None`, it will first find a rectangular region with the same aspect ration of the image and

                contains all masked area, and then expand that area based on `padding_mask_crop`. The image and mask_image will then be cropped based on

                the expanded area before resizing to the original image size for inpainting. This is useful when the masked area is small while the image is large

                and contain information inreleant for inpainging, such as background.

            strength (`float`, *optional*, defaults to 0.9999):

                Conceptually, indicates how much to transform the masked portion of the reference `image`. Must be

                between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the

                `strength`. The number of denoising steps depends on the amount of noise initially added. When

                `strength` is 1, added noise will be maximum and the denoising process will run for the full number of

                iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores the masked

                portion of the reference `image`. Note that in the case of `denoising_start` being declared as an

                integer, the value of `strength` will be ignored.

            num_inference_steps (`int`, *optional*, defaults to 50):

                The number of denoising steps. More denoising steps usually lead to a higher quality image at the

                expense of slower inference.

            timesteps (`List[int]`, *optional*):

                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument

                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is

                passed will be used. Must be in descending order.

            denoising_start (`float`, *optional*):

                When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be

                bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and

                it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,

                strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline

                is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image

                Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).

            denoising_end (`float`, *optional*):

                When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be

                completed before it is intentionally prematurely terminated. As a result, the returned sample will

                still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be

                denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the

                final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline

                forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image

                Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).

            guidance_scale (`float`, *optional*, defaults to 7.5):

                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).

                `guidance_scale` is defined as `w` of equation 2. of [Imagen

                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >

                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,

                usually at the expense of lower image quality.

            negative_prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts not to guide the image generation. If not defined, one has to pass

                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is

                less than `1`).

            negative_prompt_2 (`str` or `List[str]`, *optional*):

                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and

                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders

            prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not

                provided, text embeddings will be generated from `prompt` input argument.

            negative_prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt

                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input

                argument.

            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.

                If not provided, pooled text embeddings will be generated from `prompt` input argument.

            negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt

                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`

                input argument.

            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.

            num_images_per_prompt (`int`, *optional*, defaults to 1):

                The number of images to generate per prompt.

            eta (`float`, *optional*, defaults to 0.0):

                Corresponds to parameter eta (Ξ·) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to

                [`schedulers.DDIMScheduler`], will be ignored for others.

            generator (`torch.Generator`, *optional*):

                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)

                to make generation deterministic.

            latents (`torch.FloatTensor`, *optional*):

                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image

                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents

                tensor will ge generated by sampling using the supplied random `generator`.

            output_type (`str`, *optional*, defaults to `"pil"`):

                The output format of the generate image. Choose between

                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a

                plain tuple.

            cross_attention_kwargs (`dict`, *optional*):

                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under

                `self.processor` in

                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).

            original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):

                If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.

                `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as

                explained in section 2.2 of

                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).

            crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):

                `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position

                `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting

                `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of

                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).

            target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):

                For most cases, `target_size` should be set to the desired height and width of the generated image. If

                not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in

                section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).

            negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):

                To negatively condition the generation process based on a specific image resolution. Part of SDXL's

                micro-conditioning as explained in section 2.2 of

                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more

                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.

            negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):

                To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's

                micro-conditioning as explained in section 2.2 of

                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more

                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.

            negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):

                To negatively condition the generation process based on a target image resolution. It should be as same

                as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of

                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more

                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.

            aesthetic_score (`float`, *optional*, defaults to 6.0):

                Used to simulate an aesthetic score of the generated image by influencing the positive text condition.

                Part of SDXL's micro-conditioning as explained in section 2.2 of

                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).

            negative_aesthetic_score (`float`, *optional*, defaults to 2.5):

                Part of SDXL's micro-conditioning as explained in section 2.2 of

                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to

                simulate an aesthetic score of the generated image by influencing the negative text condition.

            clip_skip (`int`, *optional*):

                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that

                the output of the pre-final layer will be used for computing the prompt embeddings.

            callback_on_step_end (`Callable`, *optional*):

                A function that calls at the end of each denoising steps during the inference. The function is called

                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,

                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by

                `callback_on_step_end_tensor_inputs`.

            callback_on_step_end_tensor_inputs (`List`, *optional*):

                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list

                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the

                `._callback_tensor_inputs` attribute of your pipeline class.



        Examples:



        Returns:

            [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:

            [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a

            `tuple. `tuple. When returning a tuple, the first element is a list with the generated images.

        """

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
            )

        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        # 1. Check inputs
        self.check_inputs(
            prompt,
            prompt_2,
            image,
            mask_image,
            height,
            width,
            strength,
            callback_steps,
            output_type,
            negative_prompt,
            negative_prompt_2,
            prompt_embeds,
            negative_prompt_embeds,
            callback_on_step_end_tensor_inputs,
            padding_mask_crop,
        )

        self._guidance_scale = guidance_scale
        self._guidance_rescale = guidance_rescale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs
        self._denoising_end = denoising_end
        self._denoising_start = denoising_start
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
        )

        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
            clip_skip=self.clip_skip,
        )

        # 4. set timesteps
        def denoising_value_valid(dnv):
            return isinstance(self.denoising_end, float) and 0 < dnv < 1

        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
        timesteps, num_inference_steps = self.get_timesteps(
            num_inference_steps,
            strength,
            device,
            denoising_start=self.denoising_start if denoising_value_valid else None,
        )
        # check that number of inference steps is not < 1 - as this doesn't make sense
        if num_inference_steps < 1:
            raise ValueError(
                f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
                f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
            )
        # at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
        # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
        is_strength_max = strength == 1.0

        # 5. Preprocess mask and image
        if padding_mask_crop is not None:
            crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
            resize_mode = "fill"
        else:
            crops_coords = None
            resize_mode = "default"

        original_image = image
        init_image = self.image_processor.preprocess(
            image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
        )
        init_image = init_image.to(dtype=torch.float32)

        mask = self.mask_processor.preprocess(
            mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
        )
        if masked_image_latents is not None:
            masked_image = masked_image_latents
        elif init_image.shape[1] == 4:
            # if images are in latent space, we can't mask it
            masked_image = None
        else:
            masked_image = init_image * (mask < 0.5)

        # 6. Prepare latent variables
        num_channels_latents = self.vae.config.latent_channels
        num_channels_unet = self.unet.config.in_channels
        return_image_latents = num_channels_unet == 4

        add_noise = True if self.denoising_start is None else False
        latents_outputs = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
            image=init_image,
            timestep=latent_timestep,
            is_strength_max=is_strength_max,
            add_noise=add_noise,
            return_noise=True,
            return_image_latents=return_image_latents,
        )

        if return_image_latents:
            latents, noise, image_latents = latents_outputs
        else:
            latents, noise = latents_outputs

        # 7. Prepare mask latent variables
        mask, masked_image_latents = self.prepare_mask_latents(
            mask,
            masked_image,
            batch_size * num_images_per_prompt,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            self.do_classifier_free_guidance,
        )
        pose_img = pose_img.to(device=device, dtype=prompt_embeds.dtype)

        pose_img = self.vae.encode(pose_img).latent_dist.sample()
        pose_img = pose_img * self.vae.config.scaling_factor

        # pose_img = self._encode_vae_image(pose_img, generator=generator)

        pose_img = (
                torch.cat([pose_img] * 2) if self.do_classifier_free_guidance else pose_img
        )
        cloth = self._encode_vae_image(cloth, generator=generator)

        # # 8. Check that sizes of mask, masked image and latents match
        # if num_channels_unet == 9:
        #     # default case for runwayml/stable-diffusion-inpainting
        #     num_channels_mask = mask.shape[1]
        #     num_channels_masked_image = masked_image_latents.shape[1]
        #     if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
        #         raise ValueError(
        #             f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
        #             f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
        #             f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
        #             f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
        #             " `pipeline.unet` or your `mask_image` or `image` input."
        #         )
        # elif num_channels_unet != 4:
        #     raise ValueError(
        #         f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
        #     )
        # 8.1 Prepare extra step kwargs.
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        height, width = latents.shape[-2:]
        height = height * self.vae_scale_factor
        width = width * self.vae_scale_factor

        original_size = original_size or (height, width)
        target_size = target_size or (height, width)

        # 10. Prepare added time ids & embeddings
        if negative_original_size is None:
            negative_original_size = original_size
        if negative_target_size is None:
            negative_target_size = target_size

        add_text_embeds = pooled_prompt_embeds
        if self.text_encoder_2 is None:
            text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
        else:
            text_encoder_projection_dim = self.text_encoder_2.config.projection_dim

        add_time_ids, add_neg_time_ids = self._get_add_time_ids(
            original_size,
            crops_coords_top_left,
            target_size,
            aesthetic_score,
            negative_aesthetic_score,
            negative_original_size,
            negative_crops_coords_top_left,
            negative_target_size,
            dtype=prompt_embeds.dtype,
            text_encoder_projection_dim=text_encoder_projection_dim,
        )
        add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)

        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
            add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
            add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)

        prompt_embeds = prompt_embeds.to(device)
        add_text_embeds = add_text_embeds.to(device)
        add_time_ids = add_time_ids.to(device)

        if ip_adapter_image is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image, device, batch_size * num_images_per_prompt
            )

        #project outside for loop
        image_embeds = self.unet.encoder_hid_proj(image_embeds).to(prompt_embeds.dtype)


        # 11. Denoising loop
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)

        if (
            self.denoising_end is not None
            and self.denoising_start is not None
            and denoising_value_valid(self.denoising_end)
            and denoising_value_valid(self.denoising_start)
            and self.denoising_start >= self.denoising_end
        ):
            raise ValueError(
                f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: "
                + f" {self.denoising_end} when using type float."
            )
        elif self.denoising_end is not None and denoising_value_valid(self.denoising_end):
            discrete_timestep_cutoff = int(
                round(
                    self.scheduler.config.num_train_timesteps
                    - (self.denoising_end * self.scheduler.config.num_train_timesteps)
                )
            )
            num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
            timesteps = timesteps[:num_inference_steps]

        # 11.1 Optionally get Guidance Scale Embedding
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)



        self._num_timesteps = len(timesteps)
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents

                # concat latents, mask, masked_image_latents in the channel dimension
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)


                # bsz = mask.shape[0]
                if num_channels_unet == 13:
                    latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents,pose_img], dim=1)

                # if num_channels_unet == 9:
                #     latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)

                # predict the noise residual
                added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
                if ip_adapter_image is not None:
                    added_cond_kwargs["image_embeds"] = image_embeds
                # down,reference_features = self.UNet_Encoder(cloth,t, text_embeds_cloth,added_cond_kwargs= {"text_embeds": pooled_prompt_embeds_c, "time_ids": add_time_ids},return_dict=False)
                down,reference_features = self.unet_encoder(cloth,t, text_embeds_cloth,return_dict=False)
                # print(type(reference_features))
                # print(reference_features)
                reference_features = list(reference_features)
                # print(len(reference_features))
                # for elem in reference_features:
                #     print(elem.shape)
                # exit(1)
                if self.do_classifier_free_guidance:
                    reference_features = [torch.cat([torch.zeros_like(d), d]) for d in reference_features]


                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    timestep_cond=timestep_cond,
                    cross_attention_kwargs=self.cross_attention_kwargs,
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                    garment_features=reference_features,
                )[0]
                # noise_pred = self.unet(latent_model_input, t, 
                #                             prompt_embeds,timestep_cond=timestep_cond,cross_attention_kwargs=self.cross_attention_kwargs,added_cond_kwargs=added_cond_kwargs,down_block_additional_attn=down ).sample


                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

                if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                if num_channels_unet == 4:
                    init_latents_proper = image_latents
                    if self.do_classifier_free_guidance:
                        init_mask, _ = mask.chunk(2)
                    else:
                        init_mask = mask

                    if i < len(timesteps) - 1:
                        noise_timestep = timesteps[i + 1]
                        init_latents_proper = self.scheduler.add_noise(
                            init_latents_proper, noise, torch.tensor([noise_timestep])
                        )

                    latents = (1 - init_mask) * init_latents_proper + init_mask * latents

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
                    add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
                    negative_pooled_prompt_embeds = callback_outputs.pop(
                        "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
                    )
                    add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
                    add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids)
                    mask = callback_outputs.pop("mask", mask)
                    masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

                if XLA_AVAILABLE:
                    xm.mark_step()

        if not output_type == "latent":
            # make sure the VAE is in float32 mode, as it overflows in float16
            needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast

            if needs_upcasting:
                self.upcast_vae()
                latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)

            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]

            # cast back to fp16 if needed
            if needs_upcasting:
                self.vae.to(dtype=torch.float16)
        # else:
        #     return StableDiffusionXLPipelineOutput(images=latents)


        image = self.image_processor.postprocess(image, output_type=output_type)

        if padding_mask_crop is not None:
            image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]

        # Offload all models
        self.maybe_free_model_hooks()

        # if not return_dict:
        return (image,)

        # return StableDiffusionXLPipelineOutput(images=image)