Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
+
|
6 |
+
# Load the pre-trained model and tokenizer
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2)
|
9 |
+
|
10 |
+
# Suppress warning about weights not being initialized
|
11 |
+
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2, state_dict=model.state_dict() if not isinstance(model, type(model)) else None)
|
12 |
+
|
13 |
+
# Define the prediction function
|
14 |
+
def predict(text):
|
15 |
+
# If a single example is provided, convert it to a list
|
16 |
+
if isinstance(text, str):
|
17 |
+
text = [text]
|
18 |
+
|
19 |
+
# Encode the text into tokens
|
20 |
+
encoded_text = tokenizer(text, padding='max_length', truncation=True, max_length=512, return_tensors='pt')
|
21 |
+
input_ids = encoded_text['input_ids']
|
22 |
+
attention_mask = encoded_text['attention_mask']
|
23 |
+
|
24 |
+
# Run the text through the model
|
25 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
26 |
+
logits = outputs.logits
|
27 |
+
|
28 |
+
# Get the probability of hate speech
|
29 |
+
hate_speech_probability = torch.softmax(logits, dim=1)[:, 1].tolist()
|
30 |
+
|
31 |
+
# Determine the predictions
|
32 |
+
predictions = ["Hate speech" if prob > 0.5 else "Not hate speech" for prob in hate_speech_probability]
|
33 |
+
|
34 |
+
return predictions[0] if len(predictions) == 1 else predictions
|
35 |
+
|
36 |
+
# Custom CSS styles
|
37 |
+
custom_css = """
|
38 |
+
<style>
|
39 |
+
.stTextInput {
|
40 |
+
width: 100%;
|
41 |
+
padding: 10px;
|
42 |
+
border: 1px solid #ddd;
|
43 |
+
border-radius: 5px;
|
44 |
+
margin-top: 10px;
|
45 |
+
}
|
46 |
+
|
47 |
+
.styled-button {
|
48 |
+
background-color: #4CAF50;
|
49 |
+
color: white;
|
50 |
+
padding: 10px 20px;
|
51 |
+
text-align: center;
|
52 |
+
text-decoration: none;
|
53 |
+
display: inline-block;
|
54 |
+
font-size: 16px;
|
55 |
+
cursor: pointer;
|
56 |
+
border-radius: 5px;
|
57 |
+
margin-top: 10px;
|
58 |
+
}
|
59 |
+
|
60 |
+
.styled-button:hover {
|
61 |
+
background-color: #45a049;
|
62 |
+
}
|
63 |
+
|
64 |
+
.stButton button {
|
65 |
+
background-color: #4CAF50;
|
66 |
+
color: white;
|
67 |
+
padding: 10px 20px;
|
68 |
+
text-align: center;
|
69 |
+
text-decoration: none;
|
70 |
+
display: inline-block;
|
71 |
+
font-size: 16px;
|
72 |
+
cursor: pointer;
|
73 |
+
border-radius: 5px;
|
74 |
+
}
|
75 |
+
|
76 |
+
.stButton button:hover {
|
77 |
+
background-color: #45a049;
|
78 |
+
}
|
79 |
+
|
80 |
+
.stRadio {
|
81 |
+
padding: 10px;
|
82 |
+
border: 1px solid #ddd;
|
83 |
+
border-radius: 5px;
|
84 |
+
margin-top: 10px;
|
85 |
+
}
|
86 |
+
</style>
|
87 |
+
"""
|
88 |
+
|
89 |
+
# Inject custom CSS
|
90 |
+
st.markdown(custom_css, unsafe_allow_html=True)
|
91 |
+
|
92 |
+
# Create the Streamlit app with a navigation bar
|
93 |
+
st.title("Hate Speech Detector")
|
94 |
+
|
95 |
+
# Sidebar for navigation
|
96 |
+
nav_option = st.sidebar.radio("Navigation", ["Text Input", "CSV Upload"])
|
97 |
+
|
98 |
+
# Check the chosen navigation option
|
99 |
+
if nav_option == "Text Input":
|
100 |
+
# Option to input text directly
|
101 |
+
text_input = st.text_area("Enter your text here:")
|
102 |
+
|
103 |
+
if st.button("Predict"):
|
104 |
+
# If text is entered, use that for prediction
|
105 |
+
if text_input:
|
106 |
+
prediction = predict(text_input)
|
107 |
+
st.subheader("Prediction:")
|
108 |
+
st.write(prediction)
|
109 |
+
else:
|
110 |
+
st.warning("Please enter text before clicking 'Predict'.")
|
111 |
+
|
112 |
+
elif nav_option == "CSV Upload":
|
113 |
+
# Option to upload a CSV file
|
114 |
+
uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"])
|
115 |
+
|
116 |
+
if st.button("Predict"):
|
117 |
+
# If a CSV file is uploaded, use the first column for prediction
|
118 |
+
if uploaded_file:
|
119 |
+
df = pd.read_csv(uploaded_file)
|
120 |
+
if not df.empty and not df.columns.empty:
|
121 |
+
text_column = df.columns[0]
|
122 |
+
predictions = df[text_column].apply(predict)
|
123 |
+
st.subheader("Predictions:")
|
124 |
+
st.write(predictions)
|
125 |
+
else:
|
126 |
+
st.warning("The CSV file is empty or does not have a valid column.")
|
127 |
+
else:
|
128 |
+
st.warning("Please upload a CSV file before clicking 'Predict'.")
|