leonardlin commited on
Commit
0e02ca5
β€’
1 Parent(s): 4a8282c

working streaming interface

Browse files
Files changed (2) hide show
  1. app.py +112 -14
  2. requirements.txt +4 -1
app.py CHANGED
@@ -1,13 +1,19 @@
1
  # https://www.gradio.app/guides/using-hugging-face-integrations
2
 
3
  import gradio as gr
4
- from transformers import pipeline, Conversation
 
 
 
 
 
5
 
6
- model = "mistralai/Mistral-7B-Instruct-v0.1"
7
-
8
- # Test Model
9
- model = "TinyLlama/TinyLlama-1.1B-Chat-v0.3"
10
 
 
11
  title = "Shisa 7B"
12
  description = "Test out Shisa 7B in either English or Japanese."
13
  placeholder = "Type Here / ここにε…₯εŠ›γ—γ¦γγ γ•γ„"
@@ -18,23 +24,114 @@ examples = [
18
  "γ“γ‚“γ«γ‘γ―γ€γ„γ‹γŒγŠιŽγ”γ—γ§γ™γ‹οΌŸ",
19
  ]
20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  # Docs: https://github.com/huggingface/transformers/blob/main/src/transformers/pipelines/conversational.py
22
  conversation = Conversation()
23
- chatbot = pipeline('conversational', model)
 
 
 
 
 
 
 
 
24
 
25
- def chat(input, history=[]):
26
  conversation.add_message({"role": "user", "content": input})
27
  # we do this shuffle so local shadow response doesn't get created
28
- response_conversation = chatbot(conversation)
29
- print(response_conversation)
30
- print(response_conversation.messages)
31
- print(response_conversation.messages[-1]["content"])
32
 
33
  conversation.add_message(response_conversation.messages[-1])
 
34
  response = conversation.messages[-1]["content"]
35
- return response, history
 
36
 
37
- gr.ChatInterface(
38
  chat,
39
  chatbot=gr.Chatbot(height=400),
40
  textbox=gr.Textbox(placeholder=placeholder, container=False, scale=7),
@@ -48,4 +145,5 @@ gr.ChatInterface(
48
  ).launch()
49
 
50
  # For async
51
- # ).queue().launch(share=True)
 
 
1
  # https://www.gradio.app/guides/using-hugging-face-integrations
2
 
3
  import gradio as gr
4
+ import logging
5
+ import html
6
+ import time
7
+ import torch
8
+ from threading import Thread
9
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
10
 
11
+ # Model
12
+ model_name = "mistralai/Mistral-7B-Instruct-v0.1"
13
+ model_name = "TinyLlama/TinyLlama-1.1B-Chat-v0.3"
14
+ model_name = "/models/llm/hf/mistralai_Mistral-7B-Instruct-v0.1"
15
 
16
+ # UI Settings
17
  title = "Shisa 7B"
18
  description = "Test out Shisa 7B in either English or Japanese."
19
  placeholder = "Type Here / ここにε…₯εŠ›γ—γ¦γγ γ•γ„"
 
24
  "γ“γ‚“γ«γ‘γ―γ€γ„γ‹γŒγŠιŽγ”γ—γ§γ™γ‹οΌŸ",
25
  ]
26
 
27
+ # LLM Settings
28
+ system_prompt = 'You are a helpful, friendly assistant.'
29
+ chat_history = [{"role": "system", "content": system_prompt}]
30
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
31
+ tokenizer.chat_template = "{%- for idx in range(0, messages|length) -%}\n{%- if messages[idx]['role'] == 'user' -%}\n{%- if idx > 1 -%}\n{{- bos_token + '[INST] ' + messages[idx]['content'] + ' [/INST]' -}}\n{%- else -%}\n{{- messages[idx]['content'] + ' [/INST]' -}}\n{%- endif -%}\n{% elif messages[idx]['role'] == 'system' %}\n{{- '[INST] <<SYS>>\\n' + messages[idx]['content'] + '\\n<</SYS>>\\n\\n' -}}\n{%- elif messages[idx]['role'] == 'assistant' -%}\n{{- ' ' + messages[idx]['content'] + ' ' + eos_token -}}\n{% endif %}\n{% endfor %}\n"
32
+ model = AutoModelForCausalLM.from_pretrained(
33
+ model_name,
34
+ torch_dtype=torch.bfloat16,
35
+ device_map="auto",
36
+ load_in_8bit=True,
37
+ )
38
+ streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
39
+
40
+ def chat(message, history):
41
+ chat_history.append({"role": "user", "content": message})
42
+ input_ids = tokenizer.apply_chat_template(chat_history, add_generation_prompt=True, return_tensors="pt").to('cuda')
43
+ generate_kwargs = dict(
44
+ inputs=input_ids,
45
+ streamer=streamer,
46
+ max_new_tokens=200,
47
+ do_sample=True,
48
+ temperature=0.7,
49
+ top_p=0.95,
50
+ eos_token_id=tokenizer.eos_token_id,
51
+ )
52
+ # https://www.gradio.app/main/guides/creating-a-chatbot-fast#example-using-a-local-open-source-llm-with-hugging-face
53
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
54
+ t.start()
55
+ partial_message = ""
56
+ for new_token in streamer:
57
+ partial_message += new_token # html.escape(new_token)
58
+ yield partial_message
59
+
60
+ '''
61
+ # https://www.gradio.app/main/guides/creating-a-chatbot-fast#streaming-chatbots
62
+ for i in range(len(message)):
63
+ time.sleep(0.3)
64
+ yield message[: i+1]
65
+ '''
66
+
67
+
68
+ chat_interface = gr.ChatInterface(
69
+ chat,
70
+ chatbot=gr.Chatbot(height=400),
71
+ textbox=gr.Textbox(placeholder=placeholder, container=False, scale=7),
72
+ title=title,
73
+ description=description,
74
+ theme="soft",
75
+ examples=examples,
76
+ cache_examples=False,
77
+ undo_btn="Delete Previous",
78
+ clear_btn="Clear",
79
+ )
80
+
81
+ # https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI/blob/main/app.py#L219 - we use this with construction b/c Gradio barfs on autoreload otherwise
82
+ with gr.Blocks() as demo:
83
+ chat_interface.render()
84
+ gr.Markdown("You can try these greetings in English, Japanese, familiar Japanese, or formal Japanese. We limit output to 200 tokens.")
85
+
86
+
87
+ demo.queue().launch()
88
+
89
+ '''
90
+ # Works for Text input...
91
+ demo = gr.Interface.from_pipeline(pipe)
92
+ '''
93
+
94
+ '''
95
+ def chat(message, history):
96
+ print("foo")
97
+ for i in range(len(message)):
98
+ time.sleep(0.3)
99
+ yield "You typed: " + message[: i+1]
100
+ # print('history:', history)
101
+ # print('message:', message)
102
+ # for new_next in streamer:
103
+ # yield new_text
104
+
105
+
106
+ '''
107
+
108
+
109
+ '''
110
  # Docs: https://github.com/huggingface/transformers/blob/main/src/transformers/pipelines/conversational.py
111
  conversation = Conversation()
112
+ conversation.add_message({"role": "system", "content": system})
113
+ device = torch.device('cuda')
114
+ pipe = pipeline(
115
+ 'conversational',
116
+ model=model,
117
+ tokenizer=tokenizer,
118
+ streamer=streamer,
119
+
120
+ )
121
 
122
+ def chat(input, history):
123
  conversation.add_message({"role": "user", "content": input})
124
  # we do this shuffle so local shadow response doesn't get created
125
+ response_conversation = pipe(conversation)
126
+ print("foo:", response_conversation.messages[-1]["content"])
 
 
127
 
128
  conversation.add_message(response_conversation.messages[-1])
129
+ print("boo:", response_conversation.messages[-1]["content"])
130
  response = conversation.messages[-1]["content"]
131
+ response = "ping"
132
+ return response
133
 
134
+ demo = gr.ChatInterface(
135
  chat,
136
  chatbot=gr.Chatbot(height=400),
137
  textbox=gr.Textbox(placeholder=placeholder, container=False, scale=7),
 
145
  ).launch()
146
 
147
  # For async
148
+ # ).queue().launch()
149
+ '''
requirements.txt CHANGED
@@ -1,3 +1,6 @@
 
 
1
  gradio
 
2
  torch
3
- transformers
 
1
+ accelerate
2
+ bitsandbytes
3
  gradio
4
+ scipy
5
  torch
6
+ transformers