Spaces:
Runtime error
Runtime error
leonardlin
commited on
Commit
β’
0e02ca5
1
Parent(s):
4a8282c
working streaming interface
Browse files- app.py +112 -14
- requirements.txt +4 -1
app.py
CHANGED
@@ -1,13 +1,19 @@
|
|
1 |
# https://www.gradio.app/guides/using-hugging-face-integrations
|
2 |
|
3 |
import gradio as gr
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
|
|
|
11 |
title = "Shisa 7B"
|
12 |
description = "Test out Shisa 7B in either English or Japanese."
|
13 |
placeholder = "Type Here / γγγ«ε
₯εγγ¦γγ γγ"
|
@@ -18,23 +24,114 @@ examples = [
|
|
18 |
"γγγ«γ‘γ―γγγγγιγγγ§γγοΌ",
|
19 |
]
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
# Docs: https://github.com/huggingface/transformers/blob/main/src/transformers/pipelines/conversational.py
|
22 |
conversation = Conversation()
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
def chat(input, history
|
26 |
conversation.add_message({"role": "user", "content": input})
|
27 |
# we do this shuffle so local shadow response doesn't get created
|
28 |
-
response_conversation =
|
29 |
-
print(response_conversation)
|
30 |
-
print(response_conversation.messages)
|
31 |
-
print(response_conversation.messages[-1]["content"])
|
32 |
|
33 |
conversation.add_message(response_conversation.messages[-1])
|
|
|
34 |
response = conversation.messages[-1]["content"]
|
35 |
-
|
|
|
36 |
|
37 |
-
gr.ChatInterface(
|
38 |
chat,
|
39 |
chatbot=gr.Chatbot(height=400),
|
40 |
textbox=gr.Textbox(placeholder=placeholder, container=False, scale=7),
|
@@ -48,4 +145,5 @@ gr.ChatInterface(
|
|
48 |
).launch()
|
49 |
|
50 |
# For async
|
51 |
-
# ).queue().launch(
|
|
|
|
1 |
# https://www.gradio.app/guides/using-hugging-face-integrations
|
2 |
|
3 |
import gradio as gr
|
4 |
+
import logging
|
5 |
+
import html
|
6 |
+
import time
|
7 |
+
import torch
|
8 |
+
from threading import Thread
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
10 |
|
11 |
+
# Model
|
12 |
+
model_name = "mistralai/Mistral-7B-Instruct-v0.1"
|
13 |
+
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v0.3"
|
14 |
+
model_name = "/models/llm/hf/mistralai_Mistral-7B-Instruct-v0.1"
|
15 |
|
16 |
+
# UI Settings
|
17 |
title = "Shisa 7B"
|
18 |
description = "Test out Shisa 7B in either English or Japanese."
|
19 |
placeholder = "Type Here / γγγ«ε
₯εγγ¦γγ γγ"
|
|
|
24 |
"γγγ«γ‘γ―γγγγγιγγγ§γγοΌ",
|
25 |
]
|
26 |
|
27 |
+
# LLM Settings
|
28 |
+
system_prompt = 'You are a helpful, friendly assistant.'
|
29 |
+
chat_history = [{"role": "system", "content": system_prompt}]
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
31 |
+
tokenizer.chat_template = "{%- for idx in range(0, messages|length) -%}\n{%- if messages[idx]['role'] == 'user' -%}\n{%- if idx > 1 -%}\n{{- bos_token + '[INST] ' + messages[idx]['content'] + ' [/INST]' -}}\n{%- else -%}\n{{- messages[idx]['content'] + ' [/INST]' -}}\n{%- endif -%}\n{% elif messages[idx]['role'] == 'system' %}\n{{- '[INST] <<SYS>>\\n' + messages[idx]['content'] + '\\n<</SYS>>\\n\\n' -}}\n{%- elif messages[idx]['role'] == 'assistant' -%}\n{{- ' ' + messages[idx]['content'] + ' ' + eos_token -}}\n{% endif %}\n{% endfor %}\n"
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(
|
33 |
+
model_name,
|
34 |
+
torch_dtype=torch.bfloat16,
|
35 |
+
device_map="auto",
|
36 |
+
load_in_8bit=True,
|
37 |
+
)
|
38 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
39 |
+
|
40 |
+
def chat(message, history):
|
41 |
+
chat_history.append({"role": "user", "content": message})
|
42 |
+
input_ids = tokenizer.apply_chat_template(chat_history, add_generation_prompt=True, return_tensors="pt").to('cuda')
|
43 |
+
generate_kwargs = dict(
|
44 |
+
inputs=input_ids,
|
45 |
+
streamer=streamer,
|
46 |
+
max_new_tokens=200,
|
47 |
+
do_sample=True,
|
48 |
+
temperature=0.7,
|
49 |
+
top_p=0.95,
|
50 |
+
eos_token_id=tokenizer.eos_token_id,
|
51 |
+
)
|
52 |
+
# https://www.gradio.app/main/guides/creating-a-chatbot-fast#example-using-a-local-open-source-llm-with-hugging-face
|
53 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
54 |
+
t.start()
|
55 |
+
partial_message = ""
|
56 |
+
for new_token in streamer:
|
57 |
+
partial_message += new_token # html.escape(new_token)
|
58 |
+
yield partial_message
|
59 |
+
|
60 |
+
'''
|
61 |
+
# https://www.gradio.app/main/guides/creating-a-chatbot-fast#streaming-chatbots
|
62 |
+
for i in range(len(message)):
|
63 |
+
time.sleep(0.3)
|
64 |
+
yield message[: i+1]
|
65 |
+
'''
|
66 |
+
|
67 |
+
|
68 |
+
chat_interface = gr.ChatInterface(
|
69 |
+
chat,
|
70 |
+
chatbot=gr.Chatbot(height=400),
|
71 |
+
textbox=gr.Textbox(placeholder=placeholder, container=False, scale=7),
|
72 |
+
title=title,
|
73 |
+
description=description,
|
74 |
+
theme="soft",
|
75 |
+
examples=examples,
|
76 |
+
cache_examples=False,
|
77 |
+
undo_btn="Delete Previous",
|
78 |
+
clear_btn="Clear",
|
79 |
+
)
|
80 |
+
|
81 |
+
# https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI/blob/main/app.py#L219 - we use this with construction b/c Gradio barfs on autoreload otherwise
|
82 |
+
with gr.Blocks() as demo:
|
83 |
+
chat_interface.render()
|
84 |
+
gr.Markdown("You can try these greetings in English, Japanese, familiar Japanese, or formal Japanese. We limit output to 200 tokens.")
|
85 |
+
|
86 |
+
|
87 |
+
demo.queue().launch()
|
88 |
+
|
89 |
+
'''
|
90 |
+
# Works for Text input...
|
91 |
+
demo = gr.Interface.from_pipeline(pipe)
|
92 |
+
'''
|
93 |
+
|
94 |
+
'''
|
95 |
+
def chat(message, history):
|
96 |
+
print("foo")
|
97 |
+
for i in range(len(message)):
|
98 |
+
time.sleep(0.3)
|
99 |
+
yield "You typed: " + message[: i+1]
|
100 |
+
# print('history:', history)
|
101 |
+
# print('message:', message)
|
102 |
+
# for new_next in streamer:
|
103 |
+
# yield new_text
|
104 |
+
|
105 |
+
|
106 |
+
'''
|
107 |
+
|
108 |
+
|
109 |
+
'''
|
110 |
# Docs: https://github.com/huggingface/transformers/blob/main/src/transformers/pipelines/conversational.py
|
111 |
conversation = Conversation()
|
112 |
+
conversation.add_message({"role": "system", "content": system})
|
113 |
+
device = torch.device('cuda')
|
114 |
+
pipe = pipeline(
|
115 |
+
'conversational',
|
116 |
+
model=model,
|
117 |
+
tokenizer=tokenizer,
|
118 |
+
streamer=streamer,
|
119 |
+
|
120 |
+
)
|
121 |
|
122 |
+
def chat(input, history):
|
123 |
conversation.add_message({"role": "user", "content": input})
|
124 |
# we do this shuffle so local shadow response doesn't get created
|
125 |
+
response_conversation = pipe(conversation)
|
126 |
+
print("foo:", response_conversation.messages[-1]["content"])
|
|
|
|
|
127 |
|
128 |
conversation.add_message(response_conversation.messages[-1])
|
129 |
+
print("boo:", response_conversation.messages[-1]["content"])
|
130 |
response = conversation.messages[-1]["content"]
|
131 |
+
response = "ping"
|
132 |
+
return response
|
133 |
|
134 |
+
demo = gr.ChatInterface(
|
135 |
chat,
|
136 |
chatbot=gr.Chatbot(height=400),
|
137 |
textbox=gr.Textbox(placeholder=placeholder, container=False, scale=7),
|
|
|
145 |
).launch()
|
146 |
|
147 |
# For async
|
148 |
+
# ).queue().launch()
|
149 |
+
'''
|
requirements.txt
CHANGED
@@ -1,3 +1,6 @@
|
|
|
|
|
|
1 |
gradio
|
|
|
2 |
torch
|
3 |
-
transformers
|
|
|
1 |
+
accelerate
|
2 |
+
bitsandbytes
|
3 |
gradio
|
4 |
+
scipy
|
5 |
torch
|
6 |
+
transformers
|