Spaces:
Sleeping
Sleeping
File size: 4,694 Bytes
8b9234c 74cd228 8b9234c 74cd228 8b9234c 74cd228 8b9234c 74cd228 8b9234c 74cd228 8b9234c 209fb19 8b9234c 209fb19 8b9234c 209fb19 74cd228 8b9234c 74cd228 8b9234c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
# Import necessary libraries
import matplotlib
# Use Agg backend for Matplotlib
matplotlib.use("Agg")
# Libraries for the app
import streamlit as st
import time
import io
import argparse
import sys
import os.path
import subprocess
import tempfile
import logging
# Visualization libraries
import altair as alt
import av
# Machine Learning and Image Processing libraries
import numpy as np
import pandas as pd
import cv2 as cv
from PIL import Image, ImageOps
from tqdm import tqdm
# Custom modules
import inference
from app_utils import *
@st.cache_data
def load_video(video_url):
video_bytes = open(video_url, "rb").read()
return video_bytes
@st.cache_data
def load_historical(fpath):
return pd.read_csv(fpath)
st.set_page_config(layout="wide")
def process_uploaded_file():
st.subheader("Upload your own video...")
# Initialize accepted file types for upload
img_types = ["jpg", "png", "jpeg"]
video_types = ["mp4", "avi"]
# Allow user to upload an image or video file
uploaded_file = st.file_uploader("Select an image or video file...", type=img_types + video_types)
# Display the uploaded file
if uploaded_file is not None:
if str(uploaded_file.type).split("/")[-1] in img_types:
# Display uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded image", use_column_width=True)
# TBD: Inference code to run and display for single image
elif str(uploaded_file.type).split("/")[-1] in video_types:
# Display uploaded video
st.video(uploaded_file)
# Convert streamlit video object to OpenCV format to run inferences
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(uploaded_file.read())
vf = cv.VideoCapture(tfile.name)
# Run inference on the uploaded video
with st.spinner("Running inference..."):
frames, counts, timestamps = inference.main(vf)
logging.info("INFO: Completed running inference on frames")
st.balloons()
# Convert OpenCV Numpy frames in-memory to IO Bytes for streamlit
streamlit_video_file = frames_to_video(frames=frames, fps=11)
# Show processed video and provide download button
st.video(streamlit_video_file)
st.download_button(
label="Download processed video",
data=streamlit_video_file,
mime="mp4",
file_name="processed_video.mp4",
)
# Create dataframe for fish counts and timestamps
df_counts_time = pd.DataFrame(
data={"fish_count": counts, "timestamps": timestamps[1:]}
)
# Display fish count vs. timestamp chart
st.altair_chart(
plot_count_date(dataframe=df_counts_time),
use_container_width=True,
)
else:
st.write("No file uploaded")
# Define the main function to run the Streamlit app
def run_app():
# Set Streamlit options
st.set_option("deprecation.showfileUploaderEncoding", False)
# App title and description
st.title("MIT Count Fish Counter")
st.text("Upload a video file to detect and count fish")
# Example video URL or file path (replace with actual video URL or file path)
video_url = "yolo2_out_py.mp4"
video_bytes = load_video(video_url)
# Load historical herring
df_historical_herring = load_historical(fpath="herring_count_all.csv")
main_tab, upload_tab = st.tabs(["Analysis", "Upload video for analysis"])
with main_tab:
# Create two columns for layout
col1, col2 = st.columns(2)
## Col1 #########################################
with col1:
## Initial visualizations
# Plot historical data
st.altair_chart(
plot_historical_data(df_historical_herring),
use_container_width=True,
)
# Display map of fishery locations
st.subheader("Map of Fishery Locations")
st.map(
pd.DataFrame(
np.random.randn(5, 2) / [50, 50] + [42.41, -71.38],
columns=["lat", "lon"],
),use_container_width=True
)
with col2:
# Display example processed video
st.subheader("Example of processed video")
st.video(video_bytes)
with upload_tab:
process_uploaded_file()
# Run the app if the script is executed directly
if __name__ == "__main__":
run_app() |