Spaces:
Sleeping
Sleeping
# Import necessary libraries | |
import matplotlib | |
# Use Agg backend for Matplotlib | |
matplotlib.use("Agg") | |
# Libraries for the app | |
import streamlit as st | |
import time | |
import io | |
import argparse | |
import sys | |
import os.path | |
import subprocess | |
import tempfile | |
import logging | |
# Visualization libraries | |
import altair as alt | |
import av | |
# Machine Learning and Image Processing libraries | |
import numpy as np | |
import pandas as pd | |
import cv2 as cv | |
from PIL import Image, ImageOps | |
from tqdm import tqdm | |
# Custom modules | |
import inference | |
from app_utils import * | |
def load_video(video_url): | |
video_bytes = open(video_url, "rb").read() | |
return video_bytes | |
def load_historical(fpath): | |
return pd.read_csv(fpath) | |
st.set_page_config(layout="wide") | |
# Define the main function to run the Streamlit app | |
def run_app(): | |
# Set Streamlit options | |
st.set_option("deprecation.showfileUploaderEncoding", False) | |
# App title and description | |
st.title("MIT Count Fish Counter") | |
st.text("Upload a video file to detect and count fish") | |
# Example video URL or file path (replace with actual video URL or file path) | |
video_url = "yolo2_out_py.mp4" | |
video_bytes = load_video(video_url) | |
# Load historical herring | |
df_historical_herring = load_historical(fpath="herring_count_all.csv") | |
tab1, map_tab = st.tabs(["π Chart", "Map of Fishery Locations"]) | |
# Create two columns for layout | |
col1, col2 = st.columns(2) | |
## Col1 ######################################### | |
with col1: | |
## Initial visualizations | |
# Plot historical data | |
st.altair_chart( | |
plot_historical_data(df_historical_herring), | |
use_container_width=True, | |
) | |
# Display map of fishery locations | |
st.subheader("Map of Fishery Locations") | |
st.map( | |
pd.DataFrame( | |
np.random.randn(5, 2) / [50, 50] + [42.41, -71.38], | |
columns=["lat", "lon"], | |
) | |
) | |
## Col2 ######################################### | |
with col2: | |
# Display example processed video | |
st.subheader("Example of processed video") | |
st.video(video_bytes) | |
st.subheader("Upload your own video...") | |
# Initialize accepted file types for upload | |
img_types = ["jpg", "png", "jpeg"] | |
video_types = ["mp4", "avi"] | |
# Allow user to upload an image or video file | |
uploaded_file = st.file_uploader("Select an image or video file...", type=img_types + video_types) | |
# Display the uploaded file | |
if uploaded_file is not None: | |
if str(uploaded_file.type).split("/")[-1] in img_types: | |
# Display uploaded image | |
image = Image.open(uploaded_file) | |
st.image(image, caption="Uploaded image", use_column_width=True) | |
# TBD: Inference code to run and display for single image | |
elif str(uploaded_file.type).split("/")[-1] in video_types: | |
# Display uploaded video | |
st.video(uploaded_file) | |
# Convert streamlit video object to OpenCV format to run inferences | |
tfile = tempfile.NamedTemporaryFile(delete=False) | |
tfile.write(uploaded_file.read()) | |
vf = cv.VideoCapture(tfile.name) | |
# Run inference on the uploaded video | |
with st.spinner("Running inference..."): | |
frames, counts, timestamps = inference.main(vf) | |
logging.info("INFO: Completed running inference on frames") | |
st.balloons() | |
# Convert OpenCV Numpy frames in-memory to IO Bytes for streamlit | |
streamlit_video_file = frames_to_video(frames=frames, fps=11) | |
# Show processed video and provide download button | |
st.video(streamlit_video_file) | |
st.download_button( | |
label="Download processed video", | |
data=streamlit_video_file, | |
mime="mp4", | |
file_name="processed_video.mp4", | |
) | |
# Create dataframe for fish counts and timestamps | |
df_counts_time = pd.DataFrame( | |
data={"fish_count": counts, "timestamps": timestamps[1:]} | |
) | |
# Display fish count vs. timestamp chart | |
st.altair_chart( | |
plot_count_date(dataframe=df_counts_time), | |
use_container_width=True, | |
) | |
else: | |
st.write("No file uploaded") | |
# Run the app if the script is executed directly | |
if __name__ == "__main__": | |
run_app() |