# Import necessary libraries import matplotlib # Use Agg backend for Matplotlib matplotlib.use("Agg") # Libraries for the app import streamlit as st import time import io import argparse import sys import os.path import subprocess import tempfile import logging # Visualization libraries import altair as alt import av # Machine Learning and Image Processing libraries import numpy as np import pandas as pd import cv2 as cv from PIL import Image, ImageOps from tqdm import tqdm # Custom modules import inference from app_utils import * @st.cache_data def load_video(video_url): video_bytes = open(video_url, "rb").read() return video_bytes @st.cache_data def load_historical(fpath): return pd.read_csv(fpath) st.set_page_config(layout="wide") def process_uploaded_file(): st.subheader("Upload your own video...") # Initialize accepted file types for upload img_types = ["jpg", "png", "jpeg"] video_types = ["mp4", "avi"] # Allow user to upload an image or video file uploaded_file = st.file_uploader("Select an image or video file...", type=img_types + video_types) # Display the uploaded file if uploaded_file is not None: if str(uploaded_file.type).split("/")[-1] in img_types: # Display uploaded image image = Image.open(uploaded_file) st.image(image, caption="Uploaded image", use_column_width=True) # TBD: Inference code to run and display for single image elif str(uploaded_file.type).split("/")[-1] in video_types: # Display uploaded video st.video(uploaded_file) # Convert streamlit video object to OpenCV format to run inferences tfile = tempfile.NamedTemporaryFile(delete=False) tfile.write(uploaded_file.read()) vf = cv.VideoCapture(tfile.name) # Run inference on the uploaded video with st.spinner("Running inference..."): frames, counts, timestamps = inference.main(vf) logging.info("INFO: Completed running inference on frames") st.balloons() # Convert OpenCV Numpy frames in-memory to IO Bytes for streamlit streamlit_video_file = frames_to_video(frames=frames, fps=11) # Show processed video and provide download button st.video(streamlit_video_file) st.download_button( label="Download processed video", data=streamlit_video_file, mime="mp4", file_name="processed_video.mp4", ) # Create dataframe for fish counts and timestamps df_counts_time = pd.DataFrame( data={"fish_count": counts, "timestamps": timestamps[1:]} ) # Display fish count vs. timestamp chart st.altair_chart( plot_count_date(dataframe=df_counts_time), use_container_width=True, ) else: st.write("No file uploaded") # Define the main function to run the Streamlit app def run_app(): # Set Streamlit options st.set_option("deprecation.showfileUploaderEncoding", False) # App title and description st.title("MIT Count Fish Counter") st.text("Upload a video file to detect and count fish") # Example video URL or file path (replace with actual video URL or file path) video_url = "yolo2_out_py.mp4" video_bytes = load_video(video_url) # Load historical herring df_historical_herring = load_historical(fpath="herring_count_all.csv") main_tab, upload_tab = st.tabs(["Analysis", "Upload video for analysis"]) with main_tab: # Create two columns for layout col1, col2 = st.columns(2) ## Col1 ######################################### with col1: ## Initial visualizations # Plot historical data st.altair_chart( plot_historical_data(df_historical_herring), use_container_width=True, ) # Display map of fishery locations st.subheader("Map of Fishery Locations") st.map( pd.DataFrame( np.random.randn(5, 2) / [50, 50] + [42.41, -71.38], columns=["lat", "lon"], ),use_container_width=True ) with col2: # Display example processed video st.subheader("Example of processed video") st.video(video_bytes) with upload_tab: process_uploaded_file() # Run the app if the script is executed directly if __name__ == "__main__": run_app()