import pandas as pd
import streamlit as st
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
from utils import ascending_metrics, metric_ranges
import numpy as np
from st_aggrid import AgGrid, GridOptionsBuilder, JsCode
from os.path import exists
import threading
st.set_page_config(layout="wide")
def get_model_infos():
api = HfApi()
model_infos = api.list_models(filter="model-index", cardData=True)
return model_infos
def parse_metric_value(value):
if isinstance(value, str):
"".join(value.split("%"))
try:
value = float(value)
except: # noqa: E722
value = None
elif isinstance(value, list):
if len(value) > 0:
value = value[0]
else:
value = None
value = round(value, 4) if isinstance(value, float) else None
return value
def parse_metrics_rows(meta, only_verified=False):
if not isinstance(meta["model-index"], list) or len(meta["model-index"]) == 0 or "results" not in meta["model-index"][0]:
return None
for result in meta["model-index"][0]["results"]:
if not isinstance(result, dict) or "dataset" not in result or "metrics" not in result or "type" not in result["dataset"]:
continue
dataset = result["dataset"]["type"]
if dataset == "":
continue
row = {"dataset": dataset, "split": "-unspecified-", "config": "-unspecified-"}
if "split" in result["dataset"]:
row["split"] = result["dataset"]["split"]
if "config" in result["dataset"]:
row["config"] = result["dataset"]["config"]
no_results = True
incorrect_results = False
for metric in result["metrics"]:
name = metric["type"].lower().strip()
if name in ("model_id", "dataset", "split", "config", "pipeline_tag", "only_verified"):
# Metrics are not allowed to be named "dataset", "split", "config", "pipeline_tag"
continue
value = parse_metric_value(metric.get("value", None))
if value is None:
continue
if name in row:
new_metric_better = value < row[name] if name in ascending_metrics else value > row[name]
if name not in row or new_metric_better:
# overwrite the metric if the new value is better.
if only_verified:
if "verified" in metric and metric["verified"]:
no_results = False
row[name] = value
if name in metric_ranges:
if value < metric_ranges[name][0] or value > metric_ranges[name][1]:
incorrect_results = True
else:
no_results = False
row[name] = value
if name in metric_ranges:
if value < metric_ranges[name][0] or value > metric_ranges[name][1]:
incorrect_results = True
if no_results or incorrect_results:
continue
yield row
@st.cache(ttl=0)
def get_data_wrapper():
def get_data(dataframe=None, verified_dataframe=None):
data = []
verified_data = []
print("getting model infos")
model_infos = get_model_infos()
print("got model infos")
for model_info in model_infos:
meta = model_info.cardData
if meta is None:
continue
for row in parse_metrics_rows(meta):
if row is None:
continue
row["model_id"] = model_info.id
row["pipeline_tag"] = model_info.pipeline_tag
row["only_verified"] = False
data.append(row)
for row in parse_metrics_rows(meta, only_verified=True):
if row is None:
continue
row["model_id"] = model_info.id
row["pipeline_tag"] = model_info.pipeline_tag
row["only_verified"] = True
data.append(row)
dataframe = pd.DataFrame.from_records(data)
dataframe.to_pickle("cache.pkl")
if exists("cache.pkl"):
# If we have saved the results previously, call an asynchronous process
# to fetch the results and update the saved file. Don't make users wait
# while we fetch the new results. Instead, display the old results for
# now. The new results should be loaded when this method
# is called again.
dataframe = pd.read_pickle("cache.pkl")
t = threading.Thread(name="get_data procs", target=get_data)
t.start()
else:
# We have to make the users wait during the first startup of this app.
get_data()
dataframe = pd.read_pickle("cache.pkl")
return dataframe
# dataframe = get_data_wrapper()
st.markdown("# 🤗 Leaderboards")
st.warning(
"**⚠️ This project has been archived. If you want to evaluate LLMs, checkout [this collection](https://huggingface.co/collections/clefourrier/llm-leaderboards-and-benchmarks-✨-64f99d2e11e92ca5568a7cce) of leaderboards.**"
)
# query_params = st.experimental_get_query_params()
# if "first_query_params" not in st.session_state:
# st.session_state.first_query_params = query_params
# first_query_params = st.session_state.first_query_params
# default_task = first_query_params.get("task", [None])[0]
# default_only_verified = bool(int(first_query_params.get("only_verified", [0])[0]))
# print(default_only_verified)
# default_dataset = first_query_params.get("dataset", [None])[0]
# default_split = first_query_params.get("split", [None])[0]
# default_config = first_query_params.get("config", [None])[0]
# default_metric = first_query_params.get("metric", [None])[0]
# only_verified_results = st.sidebar.checkbox(
# "Filter for Verified Results",
# value=default_only_verified,
# help="Select this checkbox if you want to see only results produced by the Hugging Face model evaluator, and no self-reported results."
# )
# selectable_tasks = list(set(dataframe.pipeline_tag))
# if None in selectable_tasks:
# selectable_tasks.remove(None)
# selectable_tasks.sort(key=lambda name: name.lower())
# selectable_tasks = ["-any-"] + selectable_tasks
# task = st.sidebar.selectbox(
# "Task",
# selectable_tasks,
# index=(selectable_tasks).index(default_task) if default_task in selectable_tasks else 0,
# help="Filter the selectable datasets by task. Leave as \"-any-\" to see all selectable datasets."
# )
# if task != "-any-":
# dataframe = dataframe[dataframe.pipeline_tag == task]
# selectable_datasets = ["-any-"] + sorted(list(set(dataframe.dataset.tolist())), key=lambda name: name.lower())
# if "" in selectable_datasets:
# selectable_datasets.remove("")
# dataset = st.sidebar.selectbox(
# "Dataset",
# selectable_datasets,
# index=selectable_datasets.index(default_dataset) if default_dataset in selectable_datasets else 0,
# help="Select a dataset to see the leaderboard!"
# )
# dataframe = dataframe[dataframe.only_verified == only_verified_results]
# current_query_params = {"dataset": [dataset], "only_verified": [int(only_verified_results)], "task": [task]}
# st.experimental_set_query_params(**current_query_params)
# if dataset != "-any-":
# dataset_df = dataframe[dataframe.dataset == dataset]
# else:
# dataset_df = dataframe
# dataset_df = dataset_df.dropna(axis="columns", how="all")
# if len(dataset_df) > 0:
# selectable_configs = list(set(dataset_df["config"]))
# selectable_configs.sort(key=lambda name: name.lower())
# if "-unspecified-" in selectable_configs:
# selectable_configs.remove("-unspecified-")
# selectable_configs = ["-unspecified-"] + selectable_configs
# if dataset != "-any-":
# config = st.sidebar.selectbox(
# "Config",
# selectable_configs,
# index=selectable_configs.index(default_config) if default_config in selectable_configs else 0,
# help="Filter the results on the current leaderboard by the dataset config. Self-reported results might not report the config, which is why \"-unspecified-\" is an option."
# )
# dataset_df = dataset_df[dataset_df.config == config]
# selectable_splits = list(set(dataset_df["split"]))
# selectable_splits.sort(key=lambda name: name.lower())
# if "-unspecified-" in selectable_splits:
# selectable_splits.remove("-unspecified-")
# selectable_splits = ["-unspecified-"] + selectable_splits
# split = st.sidebar.selectbox(
# "Split",
# selectable_splits,
# index=selectable_splits.index(default_split) if default_split in selectable_splits else 0,
# help="Filter the results on the current leaderboard by the dataset split. Self-reported results might not report the split, which is why \"-unspecified-\" is an option."
# )
# current_query_params.update({"config": [config], "split": [split]})
# st.experimental_set_query_params(**current_query_params)
# dataset_df = dataset_df[dataset_df.split == split]
# not_selectable_metrics = ["model_id", "dataset", "split", "config", "pipeline_tag", "only_verified"]
# selectable_metrics = list(filter(lambda column: column not in not_selectable_metrics, dataset_df.columns))
# dataset_df = dataset_df.filter(["model_id"] + (["dataset"] if dataset == "-any-" else []) + selectable_metrics)
# dataset_df = dataset_df.dropna(thresh=2) # Want at least two non-na values (one for model_id and one for a metric).
# sorting_metric = st.sidebar.radio(
# "Sorting Metric",
# selectable_metrics,
# index=selectable_metrics.index(default_metric) if default_metric in selectable_metrics else 0,
# help="Select the metric to sort the leaderboard by. Click on the metric name in the leaderboard to reverse the sorting order."
# )
# current_query_params.update({"metric": [sorting_metric]})
# st.experimental_set_query_params(**current_query_params)
# st.markdown(
# "Please click on the model's name to be redirected to its model card."
# )
# st.markdown(
# "Want to beat the leaderboard? Don't see your model here? Simply request an automatic evaluation [here](https://huggingface.co/spaces/autoevaluate/model-evaluator)."
# )
# st.markdown(
# "If you do not see your self-reported results here, ensure that your results are in the expected range for all metrics. E.g., accuracy is 0-1, not 0-100."
# )
# if dataset == "-any-":
# st.info(
# "Note: you haven't chosen a dataset, so the leaderboard is showing the best scoring model for a random sample of the datasets available."
# )
# # Make the default metric appear right after model names and dataset names
# cols = dataset_df.columns.tolist()
# cols.remove(sorting_metric)
# sorting_metric_index = 1 if dataset != "-any-" else 2
# cols = cols[:sorting_metric_index] + [sorting_metric] + cols[sorting_metric_index:]
# dataset_df = dataset_df[cols]
# # Sort the leaderboard, giving the sorting metric highest priority and then ordering by other metrics in the case of equal values.
# dataset_df = dataset_df.sort_values(by=cols[sorting_metric_index:], ascending=[metric in ascending_metrics for metric in cols[sorting_metric_index:]])
# dataset_df = dataset_df.replace(np.nan, '-')
# # If dataset is "-any-", only show the best model for a random sample of 100 datasets.
# # Otherwise The leaderboard is way too long and doesn't give the users a feel for all of
# # the datasets available for a task.
# if dataset == "-any-":
# filtered_dataset_df_dict = {column: [] for column in dataset_df.columns}
# seen_datasets = set()
# for _, row in dataset_df.iterrows():
# if row["dataset"] not in seen_datasets:
# for column in dataset_df.columns:
# filtered_dataset_df_dict[column].append(row[column])
# seen_datasets.add(row["dataset"])
# dataset_df = pd.DataFrame(filtered_dataset_df_dict)
# dataset_df = dataset_df.sample(min(100, len(dataset_df)))
# # Make the leaderboard
# gb = GridOptionsBuilder.from_dataframe(dataset_df)
# gb.configure_default_column(sortable=False)
# gb.configure_column(
# "model_id",
# cellRenderer=JsCode('''function(params) {return ''+params.value+''}'''),
# )
# if dataset == "-any-":
# gb.configure_column(
# "dataset",
# cellRenderer=JsCode('''function(params) {return ''+params.value+''}'''),
# )
# for name in selectable_metrics:
# gb.configure_column(name, type=["numericColumn","numberColumnFilter","customNumericFormat"], precision=4, aggFunc='sum')
# gb.configure_column(
# sorting_metric,
# sortable=True,
# cellStyle=JsCode('''function(params) { return {'backgroundColor': '#FFD21E'}}''')
# )
# go = gb.build()
# fit_columns = len(dataset_df.columns) < 10
# AgGrid(dataset_df, gridOptions=go, height=28*len(dataset_df) + (35 if fit_columns else 41), allow_unsafe_jscode=True, fit_columns_on_grid_load=fit_columns, enable_enterprise_modules=False)
# else:
# st.markdown(
# "No " + ("verified" if only_verified_results else "unverified") + " results to display. Try toggling the verified results filter."
# )