model-evaluator / evaluation.py
lewtun's picture
lewtun HF staff
Catch metadata exceptions in autoevaluate datasets
2f16764
import copy
from dataclasses import dataclass
import streamlit as st
from huggingface_hub import DatasetFilter, HfApi
from huggingface_hub.hf_api import DatasetInfo
@dataclass(frozen=True, eq=True)
class EvaluationInfo:
task: str
model: str
dataset_name: str
dataset_config: str
dataset_split: str
metrics: set
def create_evaluation_info(dataset_info: DatasetInfo) -> int:
if dataset_info.cardData is not None:
metadata = dataset_info.cardData["eval_info"]
metadata.pop("col_mapping", None)
# TODO(lewtun): populate dataset cards with metric info
if "metrics" not in metadata:
metadata["metrics"] = frozenset()
else:
metadata["metrics"] = frozenset(metadata["metrics"])
return EvaluationInfo(**metadata)
def get_evaluation_infos():
evaluation_datasets = []
filt = DatasetFilter(author="autoevaluate")
autoevaluate_datasets = HfApi().list_datasets(filter=filt, full=True)
for dset in autoevaluate_datasets:
try:
evaluation_datasets.append(create_evaluation_info(dset))
except Exception as e:
print(f"Error processing dataset {dset}: {e}")
return evaluation_datasets
def filter_evaluated_models(models, task, dataset_name, dataset_config, dataset_split, metrics):
evaluation_infos = get_evaluation_infos()
models_to_filter = copy.copy(models)
for model in models_to_filter:
evaluation_info = EvaluationInfo(
task=task,
model=model,
dataset_name=dataset_name,
dataset_config=dataset_config,
dataset_split=dataset_split,
metrics=frozenset(metrics),
)
if evaluation_info in evaluation_infos:
st.info(
f"Model [`{model}`](https://huggingface.co/{model}) has already been evaluated on this configuration. \
This model will be excluded from the evaluation job..."
)
models.remove(model)
return models