Spaces:
Build error
Build error
File size: 7,201 Bytes
79e0b51 173b282 8028287 173b282 758e1e6 62baf56 758e1e6 8028287 173b282 79e0b51 173b282 79e0b51 c7d234c 79e0b51 c7d234c 79e0b51 758e1e6 79e0b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
from transformers import ViTConfig, ViTForImageClassification
from transformers import ViTFeatureExtractor
from PIL import Image
import requests
import matplotlib.pyplot as plt
import gradio as gr
from gradio.mix import Parallel
from transformers import ImageClassificationPipeline, PerceiverForImageClassificationConvProcessing, PerceiverFeatureExtractor
from transformers import VisionEncoderDecoderModel
from transformers import AutoTokenizer
import torch
from transformers import (
AutoModelForCausalLM,
LogitsProcessorList,
MinLengthLogitsProcessor,
StoppingCriteriaList,
MaxLengthCriteria,
)
import json
import os
from spaces_info import description, examples, initial_prompt_value
API_URL = os.getenv("API_URL")
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
##Bloom Inference API
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom"
HF_API_TOKEN = os.environ["HF_API_TOKEN"]
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
print(API_URL)
print(HF_API_TOKEN)
def query(payload):
print(payload)
response = requests.request("POST", API_URL, json=payload, headers={"Authorization": f"Bearer {HF_API_TOKEN}"})
print(response)
return json.loads(response.content.decode("utf-8"))
# https://github.com/NielsRogge/Transformers-Tutorials/blob/master/HuggingFace_vision_ecosystem_overview_(June_2022).ipynb
# option 1: load with randomly initialized weights (train from scratch)
#tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
#model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
def inference(input_sentence, max_length, sample_or_greedy, seed=42):
if sample_or_greedy == "Sample":
parameters = {
"max_new_tokens": max_length,
"top_p": 0.9,
"do_sample": True,
"seed": seed,
"early_stopping": False,
"length_penalty": 0.0,
"eos_token_id": None,
}
else:
parameters = {
"max_new_tokens": max_length,
"do_sample": False,
"seed": seed,
"early_stopping": False,
"length_penalty": 0.0,
"eos_token_id": None,
}
payload = {"inputs": input_sentence, "parameters": parameters,"options" : {"use_cache": False} }
data = query(payload)
if "error" in data:
return (None, None, f"<span style='color:red'>ERROR: {data['error']} </span>")
generation = data[0]["generated_text"].split(input_sentence, 1)[1]
return (
before_prompt
+ input_sentence
+ prompt_to_generation
+ generation
+ after_generation,
data[0]["generated_text"],
"",
)
def create_story(text_seed):
#tokenizer = AutoTokenizer.from_pretrained("gpt2")
#model = AutoModelForCausalLM.from_pretrained("gpt2")
#eleutherAI gpt-3 based
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M")
# set pad_token_id to eos_token_id because GPT2 does not have a EOS token
model.config.pad_token_id = model.config.eos_token_id
#input_prompt = "It might be possible to"
input_prompt = text_seed
input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids
# instantiate logits processors
logits_processor = LogitsProcessorList(
[
MinLengthLogitsProcessor(10, eos_token_id=model.config.eos_token_id),
]
)
stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=100)])
outputs = model.greedy_search(
input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria
)
result_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return result_text
def self_caption(image):
repo_name = "ydshieh/vit-gpt2-coco-en"
#test_image = "cats.jpg"
test_image = image
#url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
#test_image = Image.open(requests.get(url, stream=True).raw)
#test_image.save("cats.png")
feature_extractor2 = ViTFeatureExtractor.from_pretrained(repo_name)
tokenizer = AutoTokenizer.from_pretrained(repo_name)
model2 = VisionEncoderDecoderModel.from_pretrained(repo_name)
pixel_values = feature_extractor2(test_image, return_tensors="pt").pixel_values
print("Pixel Values")
print(pixel_values)
# autoregressively generate text (using beam search or other decoding strategy)
generated_ids = model2.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True)
# decode into text
preds = tokenizer.batch_decode(generated_ids[0], skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
print("Predictions")
print(preds)
print("The preds type is : ",type(preds))
pred_keys = ["Prediction"]
pred_value = preds
pred_dictionary = dict(zip(pred_keys, pred_value))
print("Pred dictionary")
print(pred_dictionary)
#return(pred_dictionary)
preds = ' '.join(preds)
#inference(input_sentence, max_length, sample_or_greedy, seed=42)
story = inference(preds, 32, "Sample", 42)
#story = create_story(preds)
#story = ' '.join(story)
return story
def classify_image(image):
config = ViTConfig(num_hidden_layers=12, hidden_size=768)
model = ViTForImageClassification(config)
#print(config)
feature_extractor = ViTFeatureExtractor()
# or, to load one that corresponds to a checkpoint on the hub:
#feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
#the following gets called by classify_image()
feature_extractor = PerceiverFeatureExtractor.from_pretrained("deepmind/vision-perceiver-conv")
model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")
#google/vit-base-patch16-224, deepmind/vision-perceiver-conv
image_pipe = ImageClassificationPipeline(model=model, feature_extractor=feature_extractor)
results = image_pipe(image)
print("RESULTS")
print(results)
# convert to format Gradio expects
output = {}
for prediction in results:
predicted_label = prediction['label']
score = prediction['score']
output[predicted_label] = score
print("OUTPUT")
print(output)
return output
image = gr.inputs.Image(type="pil")
label = gr.outputs.Label(num_top_classes=5)
#examples = [ ["cats.jpg"], ["batter.jpg"],["drinkers.jpg"] ]
examples = [ ["batter.jpg"] ]
title = "Generate a Story from an Image"
description = "Demo for classifying images with Perceiver IO. To use it, simply upload an image and click 'submit', a story is autogenerated as well"
article = "<p style='text-align: center'></p>"
img_info1 = gr.Interface(
fn=classify_image,
inputs=image,
outputs=label,
)
img_info2 = gr.Interface(
fn=self_caption,
inputs=image,
#outputs=label,
outputs = [
gr.outputs.Textbox(label = 'Story')
],
)
Parallel(img_info1,img_info2, inputs=image, title=title, description=description, examples=examples, enable_queue=True).launch(debug=True)
#Parallel(img_info1,img_info2, inputs=image, outputs=label, title=title, description=description, examples=examples, enable_queue=True).launch(debug=True)
|