Spaces:
Build error
Build error
autonomous019
commited on
Commit
•
7e72612
1
Parent(s):
04c6deb
Update app.py
Browse files
app.py
CHANGED
@@ -84,42 +84,7 @@ def inference(input_sentence, max_length, sample_or_greedy, seed=42):
|
|
84 |
"",
|
85 |
)
|
86 |
'''
|
87 |
-
return generation
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
def create_story(text_seed):
|
94 |
-
#tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
95 |
-
#model = AutoModelForCausalLM.from_pretrained("gpt2")
|
96 |
-
|
97 |
-
#eleutherAI gpt-3 based
|
98 |
-
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
|
99 |
-
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M")
|
100 |
-
|
101 |
-
# set pad_token_id to eos_token_id because GPT2 does not have a EOS token
|
102 |
-
model.config.pad_token_id = model.config.eos_token_id
|
103 |
-
|
104 |
-
#input_prompt = "It might be possible to"
|
105 |
-
input_prompt = text_seed
|
106 |
-
input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids
|
107 |
-
|
108 |
-
# instantiate logits processors
|
109 |
-
logits_processor = LogitsProcessorList(
|
110 |
-
[
|
111 |
-
MinLengthLogitsProcessor(10, eos_token_id=model.config.eos_token_id),
|
112 |
-
]
|
113 |
-
)
|
114 |
-
stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=100)])
|
115 |
-
|
116 |
-
outputs = model.greedy_search(
|
117 |
-
input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria
|
118 |
-
)
|
119 |
-
|
120 |
-
result_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
121 |
-
return result_text
|
122 |
-
|
123 |
|
124 |
|
125 |
|
@@ -127,12 +92,7 @@ def create_story(text_seed):
|
|
127 |
|
128 |
def self_caption(image):
|
129 |
repo_name = "ydshieh/vit-gpt2-coco-en"
|
130 |
-
#test_image = "cats.jpg"
|
131 |
test_image = image
|
132 |
-
#url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
133 |
-
#test_image = Image.open(requests.get(url, stream=True).raw)
|
134 |
-
#test_image.save("cats.png")
|
135 |
-
|
136 |
feature_extractor2 = ViTFeatureExtractor.from_pretrained(repo_name)
|
137 |
tokenizer = AutoTokenizer.from_pretrained(repo_name)
|
138 |
model2 = VisionEncoderDecoderModel.from_pretrained(repo_name)
|
@@ -154,12 +114,11 @@ def self_caption(image):
|
|
154 |
pred_dictionary = dict(zip(pred_keys, pred_value))
|
155 |
print("Pred dictionary")
|
156 |
print(pred_dictionary)
|
157 |
-
|
158 |
preds = ' '.join(preds)
|
159 |
#inference(input_sentence, max_length, sample_or_greedy, seed=42)
|
160 |
story = inference(preds, 32, "Sample", 42)
|
161 |
-
|
162 |
-
#story = ' '.join(story)
|
163 |
return story
|
164 |
|
165 |
|
@@ -200,7 +159,7 @@ label = gr.outputs.Label(num_top_classes=5)
|
|
200 |
#examples = [ ["cats.jpg"], ["batter.jpg"],["drinkers.jpg"] ]
|
201 |
examples = [ ["batter.jpg"] ]
|
202 |
title = "Generate a Story from an Image"
|
203 |
-
description = "Demo for classifying images with Perceiver IO. To use it, simply upload an image and click 'submit', a story is autogenerated as well"
|
204 |
article = "<p style='text-align: center'></p>"
|
205 |
|
206 |
img_info1 = gr.Interface(
|
@@ -219,5 +178,5 @@ img_info2 = gr.Interface(
|
|
219 |
)
|
220 |
|
221 |
Parallel(img_info1,img_info2, inputs=image, title=title, description=description, examples=examples, enable_queue=True).launch(debug=True)
|
222 |
-
|
223 |
|
|
|
84 |
"",
|
85 |
)
|
86 |
'''
|
87 |
+
return input_sentence + generation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
|
90 |
|
|
|
92 |
|
93 |
def self_caption(image):
|
94 |
repo_name = "ydshieh/vit-gpt2-coco-en"
|
|
|
95 |
test_image = image
|
|
|
|
|
|
|
|
|
96 |
feature_extractor2 = ViTFeatureExtractor.from_pretrained(repo_name)
|
97 |
tokenizer = AutoTokenizer.from_pretrained(repo_name)
|
98 |
model2 = VisionEncoderDecoderModel.from_pretrained(repo_name)
|
|
|
114 |
pred_dictionary = dict(zip(pred_keys, pred_value))
|
115 |
print("Pred dictionary")
|
116 |
print(pred_dictionary)
|
117 |
+
|
118 |
preds = ' '.join(preds)
|
119 |
#inference(input_sentence, max_length, sample_or_greedy, seed=42)
|
120 |
story = inference(preds, 32, "Sample", 42)
|
121 |
+
|
|
|
122 |
return story
|
123 |
|
124 |
|
|
|
159 |
#examples = [ ["cats.jpg"], ["batter.jpg"],["drinkers.jpg"] ]
|
160 |
examples = [ ["batter.jpg"] ]
|
161 |
title = "Generate a Story from an Image"
|
162 |
+
description = "Demo for classifying images with Perceiver IO. To use it, simply upload an image and click 'submit', a story is autogenerated as well, story generated using Bigscience/BLOOM"
|
163 |
article = "<p style='text-align: center'></p>"
|
164 |
|
165 |
img_info1 = gr.Interface(
|
|
|
178 |
)
|
179 |
|
180 |
Parallel(img_info1,img_info2, inputs=image, title=title, description=description, examples=examples, enable_queue=True).launch(debug=True)
|
181 |
+
|
182 |
|