autonomous019's picture
Update app.py
4eabcab
from transformers import ViTConfig, ViTForImageClassification
from transformers import ViTFeatureExtractor
from PIL import Image
import requests
import matplotlib.pyplot as plt
import gradio as gr
from gradio.mix import Parallel
from transformers import ImageClassificationPipeline, PerceiverForImageClassificationConvProcessing, PerceiverFeatureExtractor
from transformers import VisionEncoderDecoderModel
from transformers import AutoTokenizer
import torch
from transformers import (
AutoModelForCausalLM,
LogitsProcessorList,
MinLengthLogitsProcessor,
StoppingCriteriaList,
MaxLengthCriteria,
)
# https://github.com/NielsRogge/Transformers-Tutorials/blob/master/HuggingFace_vision_ecosystem_overview_(June_2022).ipynb
# option 1: load with randomly initialized weights (train from scratch)
#tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
#model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
config = ViTConfig(num_hidden_layers=12, hidden_size=768)
model = ViTForImageClassification(config)
#print(config)
feature_extractor = ViTFeatureExtractor()
# or, to load one that corresponds to a checkpoint on the hub:
#feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
#the following gets called by classify_image()
feature_extractor = PerceiverFeatureExtractor.from_pretrained("deepmind/vision-perceiver-conv")
model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")
#google/vit-base-patch16-224, deepmind/vision-perceiver-conv
image_pipe = ImageClassificationPipeline(model=model, feature_extractor=feature_extractor)
def create_story(text_seed):
#tokenizer = AutoTokenizer.from_pretrained("gpt2")
#model = AutoModelForCausalLM.from_pretrained("gpt2")
#eleutherAI gpt-3 based
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M")
# set pad_token_id to eos_token_id because GPT2 does not have a EOS token
model.config.pad_token_id = model.config.eos_token_id
#input_prompt = "It might be possible to"
input_prompt = text_seed
input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids
# instantiate logits processors
logits_processor = LogitsProcessorList(
[
MinLengthLogitsProcessor(10, eos_token_id=model.config.eos_token_id),
]
)
stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=100)])
outputs = model.greedy_search(
input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria
)
result_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return result_text
def self_caption(image):
repo_name = "ydshieh/vit-gpt2-coco-en"
#test_image = "cats.jpg"
test_image = image
#url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
#test_image = Image.open(requests.get(url, stream=True).raw)
#test_image.save("cats.png")
feature_extractor2 = ViTFeatureExtractor.from_pretrained(repo_name)
tokenizer = AutoTokenizer.from_pretrained(repo_name)
model2 = VisionEncoderDecoderModel.from_pretrained(repo_name)
pixel_values = feature_extractor2(test_image, return_tensors="pt").pixel_values
print("Pixel Values")
print(pixel_values)
# autoregressively generate text (using beam search or other decoding strategy)
generated_ids = model2.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True)
# decode into text
preds = tokenizer.batch_decode(generated_ids[0], skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
print("Predictions")
print(preds)
print("The preds type is : ",type(preds))
pred_keys = ["Prediction"]
pred_value = preds
pred_dictionary = dict(zip(pred_keys, pred_value))
print("Pred dictionary")
print(pred_dictionary)
#return(pred_dictionary)
preds = ' '.join(preds)
story = create_story(preds)
story = ' '.join(story)
return story
def classify_image(image):
results = image_pipe(image)
print("RESULTS")
print(results)
# convert to format Gradio expects
output = {}
for prediction in results:
predicted_label = prediction['label']
score = prediction['score']
output[predicted_label] = score
print("OUTPUT")
print(output)
return output
image = gr.inputs.Image(type="pil")
label = gr.outputs.Label(num_top_classes=5)
examples = [ ["cats.jpg"], ["batter.jpg"],["drinkers.jpg"] ]
title = "Generate a Story from an Image"
description = "Demo for classifying images with Perceiver IO. To use it, simply upload an image and click 'submit', a story is autogenerated as well"
article = "<p style='text-align: center'></p>"
img_info1 = gr.Interface(
fn=classify_image,
inputs=image,
outputs=label,
)
img_info2 = gr.Interface(
fn=self_caption,
inputs=image,
#outputs=label,
outputs = [
gr.outputs.Textbox(label = 'Story')
],
)
Parallel(img_info1,img_info2, inputs=image, title=title, description=description, examples=examples, enable_queue=True).launch(debug=True)
#Parallel(img_info1,img_info2, inputs=image, outputs=label, title=title, description=description, examples=examples, enable_queue=True).launch(debug=True)