autonomous019 commited on
Commit
41c00ad
·
1 Parent(s): 98ec703

writing output to logs

Browse files
Files changed (1) hide show
  1. app.py +22 -0
app.py CHANGED
@@ -5,6 +5,7 @@ import requests
5
  import matplotlib.pyplot as plt
6
  import gradio as gr
7
  from transformers import ImageClassificationPipeline, PerceiverForImageClassificationConvProcessing, PerceiverFeatureExtractor
 
8
  import torch
9
 
10
 
@@ -25,8 +26,27 @@ model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/
25
 
26
  image_pipe = ImageClassificationPipeline(model=model, feature_extractor=feature_extractor)
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  def classify_image(image):
29
  results = image_pipe(image)
 
 
30
  print(results)
31
  # convert to format Gradio expects
32
  output = {}
@@ -34,6 +54,8 @@ def classify_image(image):
34
  predicted_label = prediction['label']
35
  score = prediction['score']
36
  output[predicted_label] = score
 
 
37
  return output
38
 
39
 
 
5
  import matplotlib.pyplot as plt
6
  import gradio as gr
7
  from transformers import ImageClassificationPipeline, PerceiverForImageClassificationConvProcessing, PerceiverFeatureExtractor
8
+ from transformers import AutoTokenizer
9
  import torch
10
 
11
 
 
26
 
27
  image_pipe = ImageClassificationPipeline(model=model, feature_extractor=feature_extractor)
28
 
29
+ '''
30
+ repo_name = "ydshieh/vit-gpt2-coco-en"
31
+
32
+ feature_extractor2 = ViTFeatureExtractor.from_pretrained(repo_name)
33
+ tokenizer = AutoTokenizer.from_pretrained(repo_name)
34
+ model2 = VisionEncoderDecoderModel.from_pretrained(repo_name)
35
+ pixel_values = feature_extractor2(image, return_tensors="pt").pixel_values
36
+
37
+ # autoregressively generate text (using beam search or other decoding strategy)
38
+ generated_ids = model2.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True)
39
+ # decode into text
40
+ preds = tokenizer.batch_decode(generated_ids[0], skip_special_tokens=True)
41
+ preds = [pred.strip() for pred in preds]
42
+ print(preds)
43
+ '''
44
+
45
+
46
  def classify_image(image):
47
  results = image_pipe(image)
48
+
49
+ print("RESULTS")
50
  print(results)
51
  # convert to format Gradio expects
52
  output = {}
 
54
  predicted_label = prediction['label']
55
  score = prediction['score']
56
  output[predicted_label] = score
57
+ print("OUTPUT")
58
+ print(output)
59
  return output
60
 
61