from transformers import ViTConfig, ViTForImageClassification from transformers import ViTFeatureExtractor from PIL import Image import requests import matplotlib.pyplot as plt import gradio as gr from gradio.mix import Parallel from transformers import ImageClassificationPipeline, PerceiverForImageClassificationConvProcessing, PerceiverFeatureExtractor from transformers import VisionEncoderDecoderModel from transformers import AutoTokenizer import torch # https://github.com/NielsRogge/Transformers-Tutorials/blob/master/HuggingFace_vision_ecosystem_overview_(June_2022).ipynb # option 1: load with randomly initialized weights (train from scratch) config = ViTConfig(num_hidden_layers=12, hidden_size=768) model = ViTForImageClassification(config) #print(config) feature_extractor = ViTFeatureExtractor() # or, to load one that corresponds to a checkpoint on the hub: #feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224") #the following gets called by classify_image() feature_extractor = PerceiverFeatureExtractor.from_pretrained("google/vit-base-patch16-224") model = PerceiverForImageClassificationConvProcessing.from_pretrained("google/vit-base-patch16-224") #google/vit-base-patch16-224, deepmind/vision-perceiver-con image_pipe = ImageClassificationPipeline(model=model, feature_extractor=feature_extractor) def self_caption(image): repo_name = "ydshieh/vit-gpt2-coco-en" #test_image = "cats.jpg" test_image = image #url = 'http://images.cocodataset.org/val2017/000000039769.jpg' #test_image = Image.open(requests.get(url, stream=True).raw) #test_image.save("cats.png") feature_extractor2 = ViTFeatureExtractor.from_pretrained(repo_name) tokenizer = AutoTokenizer.from_pretrained(repo_name) model2 = VisionEncoderDecoderModel.from_pretrained(repo_name) pixel_values = feature_extractor2(test_image, return_tensors="pt").pixel_values print("Pixel Values") print(pixel_values) # autoregressively generate text (using beam search or other decoding strategy) generated_ids = model2.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True) # decode into text preds = tokenizer.batch_decode(generated_ids[0], skip_special_tokens=True) preds = [pred.strip() for pred in preds] print("Predictions") print(preds) print("The preds type is : ",type(preds)) pred_keys = ["Prediction"] pred_value = preds pred_dictionary = dict(zip(pred_keys, pred_value)) print("Pred dictionary") print(pred_dictionary) #return(pred_dictionary) return preds def classify_image(image): results = image_pipe(image) print("RESULTS") print(results) # convert to format Gradio expects output = {} for prediction in results: predicted_label = prediction['label'] score = prediction['score'] output[predicted_label] = score print("OUTPUT") print(output) return output image = gr.inputs.Image(type="pil") label = gr.outputs.Label(num_top_classes=5) examples = [["cats.jpg"]] title = "Generate a Story from an Image" description = "Demo for classifying images with Perceiver IO. To use it, simply upload an image and click 'submit', a caption is autogenerated as well" article = "
" img_info1 = gr.Interface( fn=classify_image, inputs=image, outputs=label, ) img_info2 = gr.Interface( fn=self_caption, inputs=image, #outputs=label, outputs = [ gr.outputs.Textbox(label = 'Caption') ], ) Parallel(img_info1,img_info2, inputs=image, title=title, description=description, examples=examples, enable_queue=True).launch(debug=True) #Parallel(img_info1,img_info2, inputs=image, outputs=label, title=title, description=description, examples=examples, enable_queue=True).launch(debug=True)