from transformers import ViTConfig, ViTForImageClassification from transformers import ViTFeatureExtractor from PIL import Image import requests import matplotlib.pyplot as plt import gradio as gr # option 1: load with randomly initialized weights (train from scratch) config = ViTConfig(num_hidden_layers=12, hidden_size=768) model = ViTForImageClassification(config) print(config) feature_extractor = ViTFeatureExtractor() # or, to load one that corresponds to a checkpoint on the hub: #feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224") url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) image.save("cats.png") image