Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
# from datasets import load_dataset | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model_id = "distil-whisper/distil-large-v3" | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True | |
) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
max_new_tokens=128, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
# Function to process audio input and transcribe it | |
def transcribe(audio): | |
# Load and preprocess the audio | |
result = pipe(sample) | |
return result["text"] | |
# Gradio interface | |
interface = gr.Interface( | |
fn=transcribe, | |
inputs=gr.Audio(sources="microphone", type="filepath"), | |
outputs="text", | |
title="Whisper Voice Transcription with Hugging Face" | |
) | |
# Launch the app | |
interface.launch() | |