Audio-to-text / app.py
avimittal30's picture
updated app.py
68e0a01 verified
raw
history blame
1.17 kB
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
# from datasets import load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "distil-whisper/distil-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
torch_dtype=torch_dtype,
device=device,
)
# Function to process audio input and transcribe it
@spaces.GPU
def transcribe(audio):
# Load and preprocess the audio
result = pipe(sample)
return result["text"]
# Gradio interface
interface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(sources="microphone", type="filepath"),
outputs="text",
title="Whisper Voice Transcription with Hugging Face"
)
# Launch the app
interface.launch()