avisena commited on
Commit
34188c9
1 Parent(s): f884981

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -0
app.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
3
+
4
+ # Load pre-trained model and tokenizer
5
+ tokenizer = AutoTokenizer.from_pretrained("avisena/bart-base-job-info-summarizer")
6
+ model = AutoModelForSeq2SeqLM.from_pretrained("avisena/bart-base-job-info-summarizer")
7
+
8
+ # Streamlit app
9
+ st.title("Text Summarization App")
10
+
11
+ # Text input
12
+ text_input = st.text_area("Enter the text to summarize:", height=200)
13
+
14
+ # Summarize button
15
+ if st.button("Summarize"):
16
+ if text_input:
17
+ # Tokenize input text
18
+ inputs = tokenizer.encode(text_input, return_tensors="pt", max_length=1024, truncation='do_not_truncate')
19
+
20
+ # Generate summary
21
+ summary_ids = model.generate(
22
+ inputs,
23
+ max_length=200, # Maximum length of the summary
24
+ min_length=30, # Minimum length of the summary
25
+ length_penalty=0.98, # Penalty for longer sequences
26
+ num_beams=6, # Number of beams for beam search
27
+ top_p=3.7,
28
+ early_stopping=True,
29
+ temperature=1.4,
30
+ do_sample=True
31
+ )
32
+
33
+ # Decode summary
34
+ summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True, max_length=512, truncation='do_not_truncate')
35
+
36
+ # Display the summarized text
37
+ st.subheader("Summary")
38
+ st.write(summary)
39
+ else:
40
+ st.warning("Please enter some text to summarize.")