Spaces:
Sleeping
Sleeping
File size: 5,615 Bytes
fabbccf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import StreamingResponse
import lightgbm as lgb
from pydantic import BaseModel, validator
from datetime import datetime
import pandas as pd
import json
import io
import zipfile
import matplotlib.pyplot as plt
from data import get_all_features
import warnings
warnings.filterwarnings("ignore")
class DataPoint(BaseModel):
timestamp: datetime
storage_charge: float
heat_pump: float
circulation_pump: float
air_conditioning: float
ventilation: float
dishwasher: float
washing_machine: float
refrigerator: float
freezer: float
cooling_aggregate: float
facility: float
total: float
@validator('timestamp', pre=True)
def parse_timestamp(cls, value):
if isinstance(value, str):
return datetime.fromisoformat(value)
return value
app = FastAPI()
devices = [ 'storage_charge',
'heat_pump',
'circulation_pump',
'air_conditioning',
'ventilation',
'dishwasher',
'washing_machine',
'refrigerator',
'freezer',
'cooling_aggregate',
'facility']
models = dict()
for device in devices:
models[device] = lgb.Booster(model_file=f"models/model_{device}.txt")
def lowercase_keys_and_copy_values(list_of_dicts):
return [{key.lower(): value for key, value in d.items()} for d in list_of_dicts]
@app.get("/")
def greet_json():
return {"Hello": str(models)}
async def get_data(request: Request):
data = await request.json()
#data = json.loads(data)
data = lowercase_keys_and_copy_values(data)
data_points = [DataPoint(**item) for item in data]
data_dicts = [item.dict() for item in data_points]
df = pd.DataFrame(data_dicts)
predictions = dict()
for i in devices:
predictions[i] = []
return df, predictions
async def get_plots(request: Request, mode):
res = await request.json()
df = pd.DataFrame(res)
print(df)
if mode == 1:
plt.style.use('dark_background')
else:
plt.style.use('default')
plots = []
d = devices + ['total']
for i in d:
buf = io.BytesIO()
plt.figure()
plt.plot(list(range(1, len(df)+1)), df[i])
plt.xticks(rotation=60)
plt.xlabel('Hour')
plt.ylabel('kWh')
plt.title(f'Energy consumption of {i}')
plt.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
plots.append(buf)
zip_buf = io.BytesIO()
with zipfile.ZipFile(zip_buf, 'w', zipfile.ZIP_DEFLATED) as z:
for i, plot_buf in enumerate(plots):
z.writestr(f"{d[i]}.png", plot_buf.getvalue())
zip_buf.seek(0)
return StreamingResponse(zip_buf,
media_type="application/zip",
headers={"Content-Disposition": "attachment; filename=plots.zip"})
async def get_prediction(request, H):
df, predictions = await get_data(request)
predictions['total'] = []
for _ in range(H):
res = get_all_features(df, devices)
p = dict()
predictions['total'].append(0)
for i in devices:
pred = (models[i].predict(res[i].iloc[-1]) * 0.8)
predictions[i].append(pred[0])
predictions['total'][-1] += pred[0]
p[i] = pred
p['timestamp'] = df.iloc[-1]['timestamp'] + pd.to_timedelta(1, unit='h')
df = pd.concat([df, pd.DataFrame(p)], ignore_index=True)
return {"dataframe": pd.DataFrame(predictions).to_json()}
async def get_anomalies(request):
df, _ = await get_data(request)
res = get_all_features(df, devices)
for i in devices:
pred = (df[i] - models[i].predict(res[i].iloc[-1]) * 0.8).abs()
df[f"is_anomaly_{i}"] = pred > 3
return {"dataframe": df.to_json(orient='records')}
@app.post("/anomalies")
async def predict(request: Request):
try:
res = await get_anomalies(request)
return res
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/statistcks")
async def statistcks(request: Request):
try:
df, _ = await get_data(request)
res = get_all_features(df, devices)
json_dict = {key: df.to_json() for key, df in res.items()}
json_object = json.dumps(json_dict, indent=4)
return {"dataframe": json_object}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/predict/day")
async def predict(request: Request):
try:
H = 24
res = await get_prediction(request, H)
return res
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/predict/three_day")
async def predict(request: Request):
try:
H = 24 * 3
res = await get_prediction(request, H)
return res
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/predict/week")
async def predict(request: Request):
try:
H = 24 * 7
res = await get_prediction(request, H)
return res
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/plots/dark")
async def predict(request: Request):
try:
zip_buf = await get_plots(request, 1)
return zip_buf
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/plots/light")
async def predict(request: Request):
try:
zip_buf = await get_plots(request, 0)
return zip_buf
except Exception as e:
raise HTTPException(status_code=500, detail=str(e)) |