File size: 8,923 Bytes
2b4eb7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
072f36e
2b4eb7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3132471
2b4eb7c
 
 
 
 
0970f1b
 
 
 
2b4eb7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05117f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b4eb7c
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os

os.system("git clone --recursive https://github.com/JD-P/cloob-latent-diffusion")
os.system("cd cloob-latent-diffusion;pip install omegaconf pillow pytorch-lightning einops wandb ftfy regex ./CLIP")

import argparse
from functools import partial
from pathlib import Path
import sys
sys.path.append('./cloob-latent-diffusion')
sys.path.append('./cloob-latent-diffusion/cloob-training')
sys.path.append('./cloob-latent-diffusion/latent-diffusion')
sys.path.append('./cloob-latent-diffusion/taming-transformers')
sys.path.append('./cloob-latent-diffusion/v-diffusion-pytorch')
from omegaconf import OmegaConf
from PIL import Image
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from tqdm import trange
from CLIP import clip
from cloob_training import model_pt, pretrained
import ldm.models.autoencoder
from diffusion import sampling, utils
import train_latent_diffusion as train
from huggingface_hub import hf_hub_url, cached_download
import random

# Download the model files
checkpoint = cached_download(hf_hub_url("huggan/distill-ccld-wa", filename="model_student.ckpt"))
ae_model_path = cached_download(hf_hub_url("huggan/ccld_wa", filename="ae_model.ckpt"))
ae_config_path = cached_download(hf_hub_url("huggan/ccld_wa", filename="ae_model.yaml"))

# Define a few utility functions


def parse_prompt(prompt, default_weight=3.):
    if prompt.startswith('http://') or prompt.startswith('https://'):
        vals = prompt.rsplit(':', 2)
        vals = [vals[0] + ':' + vals[1], *vals[2:]]
    else:
        vals = prompt.rsplit(':', 1)
    vals = vals + ['', default_weight][len(vals):]
    return vals[0], float(vals[1])


def resize_and_center_crop(image, size):
    fac = max(size[0] / image.size[0], size[1] / image.size[1])
    image = image.resize((int(fac * image.size[0]), int(fac * image.size[1])), Image.LANCZOS)
    return TF.center_crop(image, size[::-1])


# Load the models
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
print('loading models')

# autoencoder
ae_config = OmegaConf.load(ae_config_path)
ae_model = ldm.models.autoencoder.AutoencoderKL(**ae_config.model.params)
ae_model.eval().requires_grad_(False).to(device)
ae_model.load_state_dict(torch.load(ae_model_path))
n_ch, side_y, side_x = 4, 32, 32

# diffusion model
model = train.DiffusionModel(192, [1,1,2,2], autoencoder_scale=torch.tensor(4.3084))
model.load_state_dict(torch.load(checkpoint, map_location='cpu'))
model = model.to(device).eval().requires_grad_(False)

# CLOOB
cloob_config = pretrained.get_config('cloob_laion_400m_vit_b_16_16_epochs')
cloob = model_pt.get_pt_model(cloob_config)
checkpoint = pretrained.download_checkpoint(cloob_config)
cloob.load_state_dict(model_pt.get_pt_params(cloob_config, checkpoint))
cloob.eval().requires_grad_(False).to(device)


# The key function: returns a list of n PIL images
def generate(n=1, prompts=['a red circle'], images=[], seed=42, steps=15,
             method='plms', eta=None):
  zero_embed = torch.zeros([1, cloob.config['d_embed']], device=device)
  target_embeds, weights = [zero_embed], []

  for prompt in prompts:
      txt, weight = parse_prompt(prompt)
      target_embeds.append(cloob.text_encoder(cloob.tokenize(txt).to(device)).float())
      weights.append(weight)

  for prompt in images:
      path, weight = parse_prompt(prompt)
      img = Image.open(utils.fetch(path)).convert('RGB')
      clip_size = cloob.config['image_encoder']['image_size']
      img = resize_and_center_crop(img, (clip_size, clip_size))
      batch = TF.to_tensor(img)[None].to(device)
      embed = F.normalize(cloob.image_encoder(cloob.normalize(batch)).float(), dim=-1)
      target_embeds.append(embed)
      weights.append(weight)

  weights = torch.tensor([1 - sum(weights), *weights], device=device)

  torch.manual_seed(seed)

  def cfg_model_fn(x, t):
      n = x.shape[0]
      n_conds = len(target_embeds)
      x_in = x.repeat([n_conds, 1, 1, 1])
      t_in = t.repeat([n_conds])
      clip_embed_in = torch.cat([*target_embeds]).repeat_interleave(n, 0)
      vs = model(x_in, t_in, clip_embed_in).view([n_conds, n, *x.shape[1:]])
      v = vs.mul(weights[:, None, None, None, None]).sum(0)
      return v

  def run(x, steps):
      if method == 'ddpm':
          return sampling.sample(cfg_model_fn, x, steps, 1., {})
      if method == 'ddim':
          return sampling.sample(cfg_model_fn, x, steps, eta, {})
      if method == 'prk':
          return sampling.prk_sample(cfg_model_fn, x, steps, {})
      if method == 'plms':
          return sampling.plms_sample(cfg_model_fn, x, steps, {})
      if method == 'pie':
          return sampling.pie_sample(cfg_model_fn, x, steps, {})
      if method == 'plms2':
          return sampling.plms2_sample(cfg_model_fn, x, steps, {})
      assert False

  batch_size = n
  x = torch.randn([n, n_ch, side_y, side_x], device=device)
  t = torch.linspace(1, 0, steps + 1, device=device)[:-1]
  steps = utils.get_spliced_ddpm_cosine_schedule(t)
  pil_ims = []
  for i in trange(0, n, batch_size):
      cur_batch_size = min(n - i, batch_size)
      out_latents = run(x[i:i+cur_batch_size], steps)
      outs = ae_model.decode(out_latents * torch.tensor(2.55).to(device))
      for j, out in enumerate(outs):
          pil_ims.append(utils.to_pil_image(out))

  return pil_ims
  
  
import gradio as gr

def gen_ims(prompt, im_prompt=None, seed=None, n_steps=10, method='plms'):
  if seed == None :
    seed = random.randint(0, 10000)
  print( prompt, im_prompt, seed, n_steps)
  prompts = [prompt]
  im_prompts = []
  if im_prompt != None:
    im_prompts = [im_prompt]
  pil_ims = generate(n=1, prompts=prompts, images=im_prompts, seed=seed, steps=n_steps, method=method)
  return pil_ims[0]

iface = gr.Interface(fn=gen_ims, 
  inputs=[#gr.inputs.Slider(minimum=1, maximum=1, step=1, default=1,label="Number of images"),
          #gr.inputs.Slider(minimum=0, maximum=200, step=1, label='Random seed', default=0),
          gr.inputs.Textbox(label="Text prompt"),
          gr.inputs.Image(optional=True, label="Image prompt", type='filepath'),
          #gr.inputs.Slider(minimum=10, maximum=35, step=1, default=15,label="Number of steps")
          ], 
  outputs=[gr.outputs.Image(type="pil", label="Generated Image")],
  examples=[
  ["Virgin and Child, in the style of Jacopo Bellini"],
  ["Katsushika Hokusai, The Dragon of Smoke Escaping from Mount Fuji"],
  ["Moon Light Sonata by Basuki Abdullah"],
  ["Twon Tree by M.C. Escher"],
  ["Futurism, in the style of Wassily Kandinsky"], 
  ["Art Nouveau, in the style of John Singer Sargent"], 
  ["Surrealism, in the style of Edgar Degas"], 
  ["Expressionism, in the style of Wassily Kandinsky"], 
  ["Futurism, in the style of Egon Schiele"], 
  ["Neoclassicism, in the style of Gustav Klimt"], 
  ["Cubism, in the style of Gustav Klimt"], 
  ["Op Art, in the style of Marc Chagall"], 
  ["Romanticism, in the style of M.C. Escher"], 
  ["Futurism, in the style of M.C. Escher"], 
  ["Abstract Art, in the style of M.C. Escher"], 
  ["Mannerism, in the style of Paul Klee"], 
  ["Romanesque Art, in the style of Leonardo da Vinci"], 
  ["High Renaissance, in the style of Rembrandt"], 
  ["Magic Realism, in the style of Gustave Dore"], 
  ["Realism, in the style of Jean-Michel Basquiat"], 
  ["Art Nouveau, in the style of Paul Gauguin"], 
  ["Avant-garde, in the style of Pierre-Auguste Renoir"], 
  ["Baroque, in the style of Edward Hopper"], 
  ["Post-Impressionism, in the style of Wassily Kandinsky"], 
  ["Naturalism, in the style of Rene Magritte"], 
  ["Constructivism, in the style of Paul Cezanne"], 
  ["Abstract Expressionism, in the style of Henri Matisse"], 
  ["Pop Art, in the style of Vincent van Gogh"], 
  ["Futurism, in the style of Wassily Kandinsky"], 
  ["Futurism, in the style of Zdzislaw Beksinski"], 
  ['Surrealism, in the style of Salvador Dali'], 
  ["Aaron Wacker, oil on canvas"],
      ["abstract"],
    ["landscape"],
    ["portrait"],
    ["sculpture"],
    ["genre painting"],
    ["installation"],
    ["photo"],
    ["figurative"],
    ["illustration"],
    ["still life"],
    ["history painting"],
    ["cityscape"],
    ["marina"],
    ["animal painting"],
    ["design"],
    ["calligraphy"],
    ["symbolic painting"],
    ["graffiti"],
    ["performance"],
    ["mythological painting"],
    ["battle painting"],
    ["self-portrait"],
    ["Impressionism, oil on canvas"]
  ],
  title='Art Generator and Style Mixer from 🧠 Cloob and 🎨 WikiArt - Visual Art Encyclopedia:',
  description="Trained on images from the [WikiArt](https://www.wikiart.org/) dataset, comprised of visual arts",
  article = 'Model used is: [model card](https://huggingface.co/huggan/distill-ccld-wa)..'

)
iface.launch(enable_queue=True) # , debug=True for colab debugging