import torch
import transformers
import gradio as gr
from ragatouille import RAGPretrainedModel
from huggingface_hub import InferenceClient
import re
from datetime import datetime
import json
import os

import arxiv
from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search

retrieve_results = 10 
show_examples = False
llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None']

generate_kwargs = dict(
    temperature = None,
    max_new_tokens = 512,
    top_p = None,
    do_sample = False,
    )

## RAG Model
RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert")

try:
  gr.Info("Setting up retriever, please wait...")
  rag_initial_output = RAG.search("what is Mistral?", k = 1)
  gr.Info("Retriever working successfully!")
    
except:
  gr.Warning("Retriever not working!")

## Header
mark_text = '# πŸ©ΊπŸ” Search Results\n'
header_text = "## Arxiv Paper Summary With QA Retrieval Augmented Generation \n"

try:
  with open("README.md", "r") as f:
      mdfile = f.read()
  date_pattern = r'Index Last Updated : \d{4}-\d{2}-\d{2}'
  match = re.search(date_pattern, mdfile)
  date = match.group().split(': ')[1]
  formatted_date = datetime.strptime(date, '%Y-%m-%d').strftime('%d %b %Y')
  header_text += f'Index Last Updated: {formatted_date}\n'
  index_info = f"Semantic Search - up to {formatted_date}"  
except:
  index_info = "Semantic Search"

database_choices = [index_info,'Arxiv Search - Latest - (EXPERIMENTAL)']

## Arxiv API
arx_client = arxiv.Client()
is_arxiv_available = True
check_arxiv_result = get_arxiv_live_search("What is Self Rewarding AI and how can it be used in Multi-Agent Systems?", arx_client, retrieve_results)
if len(check_arxiv_result) == 0:
  is_arxiv_available = False
  print("Arxiv search not working, switching to default search ...")
  database_choices = [index_info]

## Show examples (disabled)
if show_examples:
    with open("sample_outputs.json", "r") as f:
      sample_outputs = json.load(f)
    output_placeholder = sample_outputs['output_placeholder']
    md_text_initial = sample_outputs['search_placeholder']
    
else:
    output_placeholder = None 
    md_text_initial = ''

def rag_cleaner(inp):
    rank = inp['rank']
    title = inp['document_metadata']['title']
    content = inp['content']
    date = inp['document_metadata']['_time']
    return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}"

def get_prompt_text(question, context, formatted = True, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
    if formatted:
      sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and lets think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates."
      message = f"Question: {question}"
        
      if 'mistralai' in llm_model_picked:
          return f"<s>" + f"[INST] {sys_instruction}" +  f" {message}[/INST]"
          
      elif 'gemma' in llm_model_picked:
          return f"<bos><start_of_turn>user\n{sys_instruction}" +  f" {message}<end_of_turn>\n"
          
    return f"Context:\n {context} \n Given the following info, take a deep breath and lets think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n"

def get_references(question, retriever, k = retrieve_results):
    rag_out = retriever.search(query=question, k=k)
    return rag_out

def get_rag(message):
    return get_references(message, RAG)

def SaveResponseAndRead(result):
    documentHTML5='''
    <!DOCTYPE html>
    <html>
    <head>
        <title>Read It Aloud</title>
        <script type="text/javascript">
            function readAloud() {
                const text = document.getElementById("textArea").value;
                const speech = new SpeechSynthesisUtterance(text);
                window.speechSynthesis.speak(speech);
            }
        </script>
    </head>
    <body>
        <h1>πŸ”Š Read It Aloud</h1>
        <textarea id="textArea" rows="10" cols="80">
    '''
    documentHTML5 = documentHTML5 + result
    documentHTML5 = documentHTML5 + '''
        </textarea>
        <br>
        <button onclick="readAloud()">πŸ”Š Read Aloud</button>
    </body>
    </html>
    '''
    gr.HTML(documentHTML5)

def save_search_results(prompt, results):
    filename = re.sub(r'[^\w\-_\. ]', '_', prompt) + ".txt"
    with open(filename, "w") as f:
        f.write(f"# {prompt}\n\n")
        f.write(results)

def get_past_searches():
    txt_files = [f for f in os.listdir(".") if f.endswith(".txt") and f != "requirements.txt"]
    return txt_files

with gr.Blocks(theme = gr.themes.Soft()) as demo:
    header = gr.Markdown(header_text)

    with gr.Row():
        with gr.Column():
            msg = gr.Textbox(label = 'Search', placeholder = 'What is Mistral?')
            
            with gr.Accordion("Advanced Settings", open=False):
                with gr.Row(equal_height = True):
                    llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model')
                    llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context")
                    database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source')
                    stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False)

            output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder)
            input = gr.Textbox(show_label = False, visible = False)
            gr_md = gr.Markdown(mark_text + md_text_initial)

        with gr.Column():
            past_searches = gr.Dropdown(choices=get_past_searches(), label="Past Searches")
            past_search_content = gr.Textbox(label="Past Search Content", visible=False)

    def update_past_search_content(past_search):
        if past_search:
            with open(past_search, "r") as f:
                content = f.read()
            return gr.Textbox.update(value=content, visible=True)
        else:
            return gr.Textbox.update(visible=False)

    past_searches.change(update_past_search_content, past_searches, past_search_content)
    
    def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
        prompt_text_from_data = ""
        database_to_use = database_choice
        if database_choice == index_info:
            rag_out = get_rag(message)
        else:
            arxiv_search_success = True
            try:
                rag_out = get_arxiv_live_search(message, arx_client, retrieve_results)
                if len(rag_out) == 0:
                    arxiv_search_success = False 
            except:
                arxiv_search_success = False
    
            if not arxiv_search_success:
                gr.Warning("Arxiv Search not working, switching to semantic search ...")
                rag_out = get_rag(message)
                database_to_use = index_info 
    
        md_text_updated = mark_text
        for i in range(retrieve_results):
            rag_answer = rag_out[i]
            if i < llm_results_use:
                md_text_paper, prompt_text = get_md_text_abstract(rag_answer, source = database_to_use, return_prompt_formatting = True)
                prompt_text_from_data += f"{i+1}. {prompt_text}"
            else:
                md_text_paper = get_md_text_abstract(rag_answer, source = database_to_use)
            md_text_updated += md_text_paper
        prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked)
        save_search_results(message, md_text_updated)
        return md_text_updated, prompt, get_past_searches()
    
    def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2', stream_outputs = False):
        model_disabled_text = "LLM Model is disabled"
        output = ""
        
        if llm_model_picked == 'None':
            if stream_outputs:
                for out in model_disabled_text:
                    output += out
                    yield output
                return output 
            else:
                return model_disabled_text
              
        client = InferenceClient(llm_model_picked)
        try:
            stream = client.text_generation(prompt, **generate_kwargs,  stream=stream_outputs, details=False, return_full_text=False)
           
        except:
            gr.Warning("LLM Inference rate limit reached, try again later!")
            return ""
       
        if stream_outputs:
            for response in stream:
                output += response
                SaveResponseAndRead(response)
                yield output
            return output
        else:
            return stream

    msg.submit(update_with_rag_md, [msg, llm_results,  database_src, llm_model], [gr_md, input, past_searches]).success(ask_llm, [input, llm_model, stream_results], output_text)

demo.queue().launch()