Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,21 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
-
import
|
5 |
-
from
|
6 |
|
7 |
EXAMPLES_DIR = 'examples'
|
8 |
DEFAULT_PROMPT = "<image>"
|
9 |
|
10 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
11 |
|
12 |
-
# Load model using AutoModel with trust_remote_code=True
|
13 |
-
model =
|
14 |
model.to(device)
|
15 |
model.eval()
|
16 |
|
17 |
-
# Initialize processor
|
18 |
-
processor =
|
19 |
|
20 |
# Setup some example images
|
21 |
examples = []
|
@@ -28,14 +28,12 @@ if os.path.isdir(EXAMPLES_DIR):
|
|
28 |
def predict_caption(image, prompt):
|
29 |
assert isinstance(prompt, str)
|
30 |
|
31 |
-
#
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
)
|
36 |
-
|
37 |
-
if isinstance(caption, list):
|
38 |
-
caption = caption[0]
|
39 |
|
40 |
return caption
|
41 |
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
5 |
+
from PIL import Image # PIL should be imported separately for image handling
|
6 |
|
7 |
EXAMPLES_DIR = 'examples'
|
8 |
DEFAULT_PROMPT = "<image>"
|
9 |
|
10 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
11 |
|
12 |
+
# Load the BLIP2 model using the AutoModel with trust_remote_code=True
|
13 |
+
model = Blip2ForConditionalGeneration.from_pretrained('Salesforce/blip2-flan-t5-xl', device_map="auto", torch_dtype=torch.float16)
|
14 |
model.to(device)
|
15 |
model.eval()
|
16 |
|
17 |
+
# Initialize processor
|
18 |
+
processor = Blip2Processor.from_pretrained('Salesforce/blip2-flan-t5-xl')
|
19 |
|
20 |
# Setup some example images
|
21 |
examples = []
|
|
|
28 |
def predict_caption(image, prompt):
|
29 |
assert isinstance(prompt, str)
|
30 |
|
31 |
+
# Convert the PIL image to the format expected by the processor
|
32 |
+
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device)
|
33 |
+
|
34 |
+
# Generate the caption
|
35 |
+
generated_ids = model.generate(**inputs, max_length=50)
|
36 |
+
caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
|
|
|
37 |
|
38 |
return caption
|
39 |
|