Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 10,601 Bytes
901d428 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import streamlit as st
import openai
from openai import OpenAI
import os, base64, cv2, glob
from moviepy.editor import VideoFileClip
from datetime import datetime
import pytz
from audio_recorder_streamlit import audio_recorder
openai.api_key, openai.organization = os.getenv('OPENAI_API_KEY'), os.getenv('OPENAI_ORG_ID')
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
MODEL = "gpt-4o-2024-05-13"
if 'messages' not in st.session_state:
st.session_state.messages = []
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
safe_prompt = "".join(x for x in prompt.replace(" ", "_").replace("\n", "_") if x.isalnum() or x == "_")[:90]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
def create_file(filename, prompt, response, should_save=True):
if should_save and os.path.splitext(filename)[1] in ['.txt', '.htm', '.md']:
with open(os.path.splitext(filename)[0] + ".md", 'w', encoding='utf-8') as file:
file.write(response)
def process_text(text_input):
if text_input:
st.session_state.messages.append({"role": "user", "content": text_input})
with st.chat_message("user"):
st.markdown(text_input)
completion = client.chat.completions.create(model=MODEL, messages=[{"role": m["role"], "content": m["content"]} for m in st.session_state.messages], stream=False)
return_text = completion.choices[0].message.content
with st.chat_message("assistant"):
st.markdown(return_text)
filename = generate_filename(text_input, "md")
create_file(filename, text_input, return_text)
st.session_state.messages.append({"role": "assistant", "content": return_text})
def process_text2(MODEL='gpt-4o-2024-05-13', text_input='What is 2+2 and what is an imaginary number'):
if text_input:
st.session_state.messages.append({"role": "user", "content": text_input})
completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages)
return_text = completion.choices[0].message.content
st.write("Assistant: " + return_text)
filename = generate_filename(text_input, "md")
create_file(filename, text_input, return_text, should_save=True)
return return_text
def save_image(image_input, filename):
with open(filename, "wb") as f:
f.write(image_input.getvalue())
return filename
def process_image(image_input):
if image_input:
with st.chat_message("user"):
st.markdown('Processing image: ' + image_input.name)
base64_image = base64.b64encode(image_input.read()).decode("utf-8")
st.session_state.messages.append({"role": "user", "content": [{"type": "text", "text": "Help me understand what is in this picture and list ten facts as markdown outline with appropriate emojis that describes what you see."}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}]})
response = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, temperature=0.0)
image_response = response.choices[0].message.content
with st.chat_message("assistant"):
st.markdown(image_response)
filename_md, filename_img = generate_filename(image_input.name + '- ' + image_response, "md"), image_input.name
create_file(filename_md, image_response, '', True)
with open(filename_md, "w", encoding="utf-8") as f:
f.write(image_response)
save_image(image_input, filename_img)
st.session_state.messages.append({"role": "assistant", "content": image_response})
return image_response
def process_audio(audio_input):
if audio_input:
st.session_state.messages.append({"role": "user", "content": audio_input})
transcription = client.audio.transcriptions.create(model="whisper-1", file=audio_input)
response = client.chat.completions.create(model=MODEL, messages=[{"role": "system", "content":"You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."}, {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription.text}"}]}], temperature=0)
audio_response = response.choices[0].message.content
with st.chat_message("assistant"):
st.markdown(audio_response)
filename = generate_filename(transcription.text, "md")
create_file(filename, transcription.text, audio_response, should_save=True)
st.session_state.messages.append({"role": "assistant", "content": audio_response})
def process_audio_and_video(video_input):
if video_input is not None:
video_path = save_video(video_input)
base64Frames, audio_path = process_video(video_path, seconds_per_frame=1)
transcript = process_audio_for_video(video_input)
st.session_state.messages.append({"role": "user", "content": ["These are the frames from the video.", *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), {"type": "text", "text": f"The audio transcription is: {transcript}"}]})
response = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, temperature=0)
video_response = response.choices[0].message.content
with st.chat_message("assistant"):
st.markdown(video_response)
filename = generate_filename(transcript, "md")
create_file(filename, transcript, video_response, should_save=True)
st.session_state.messages.append({"role": "assistant", "content": video_response})
def process_audio_for_video(video_input):
if video_input:
st.session_state.messages.append({"role": "user", "content": video_input})
transcription = client.audio.transcriptions.create(model="whisper-1", file=video_input)
response = client.chat.completions.create(model=MODEL, messages=[{"role": "system", "content":"You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."}, {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription}"}]}], temperature=0)
video_response = response.choices[0].message.content
with st.chat_message("assistant"):
st.markdown(video_response)
filename = generate_filename(transcription, "md")
create_file(filename, transcription, video_response, should_save=True)
st.session_state.messages.append({"role": "assistant", "content": video_response})
return video_response
def save_video(video_file):
with open(video_file.name, "wb") as f:
f.write(video_file.getbuffer())
return video_file.name
def process_video(video_path, seconds_per_frame=2):
base64Frames, base_video_path = [], os.path.splitext(video_path)[0]
video, total_frames, fps = cv2.VideoCapture(video_path), int(cv2.VideoCapture(video_path).get(cv2.CAP_PROP_FRAME_COUNT)), cv2.VideoCapture(video_path).get(cv2.CAP_PROP_FPS)
curr_frame, frames_to_skip = 0, int(fps * seconds_per_frame)
while curr_frame < total_frames - 1:
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
success, frame = video.read()
if not success: break
_, buffer = cv2.imencode(".jpg", frame)
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
curr_frame += frames_to_skip
video.release()
audio_path = f"{base_video_path}.mp3"
clip = VideoFileClip(video_path)
clip.audio.write_audiofile(audio_path, bitrate="32k")
clip.audio.close()
clip.close()
print(f"Extracted {len(base64Frames)} frames")
print(f"Extracted audio to {audio_path}")
return base64Frames, audio_path
def save_and_play_audio(audio_recorder):
audio_bytes = audio_recorder(key='audio_recorder')
if audio_bytes:
filename = generate_filename("Recording", "wav")
with open(filename, 'wb') as f:
f.write(audio_bytes)
st.audio(audio_bytes, format="audio/wav")
return filename
return None
def main():
st.markdown("##### GPT-4o Omni Model: Text, Audio, Image, & Video")
option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video"))
if option == "Text":
text_input = st.chat_input("Enter your text:")
if text_input:
process_text(text_input)
elif option == "Image":
image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
process_image(image_input)
elif option == "Audio":
audio_input = st.file_uploader("Upload an audio file", type=["mp3", "wav"])
process_audio(audio_input)
elif option == "Video":
video_input = st.file_uploader("Upload a video file", type=["mp4"])
process_audio_and_video(video_input)
all_files = sorted(glob.glob("*.md"), key=lambda x: (os.path.splitext(x)[1], x), reverse=True)
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10]
st.sidebar.title("File Gallery")
for file in all_files:
with st.sidebar.expander(file), open(file, "r", encoding="utf-8") as f:
st.code(f.read(), language="markdown")
if prompt := st.chat_input("GPT-4o Multimodal ChatBot - What can I help you with?"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, stream=True)
response = process_text2(text_input=prompt)
st.session_state.messages.append({"role": "assistant", "content": response})
filename = save_and_play_audio(audio_recorder)
if filename is not None:
transcript = transcribe_canary(filename)
result = search_arxiv(transcript)
st.session_state.messages.append({"role": "user", "content": transcript})
with st.chat_message("user"):
st.markdown(transcript)
with st.chat_message("assistant"):
completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, stream=True)
response = process_text2(text_input=prompt)
st.session_state.messages.append({"role": "assistant", "content": response})
if __name__ == "__main__":
main() |