awacke1 commited on
Commit
1a9386d
1 Parent(s): e0bae43

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +125 -0
app.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import openai
3
+ import os
4
+ import base64
5
+ import cv2
6
+ from moviepy.editor import VideoFileClip
7
+
8
+ # Set API key and organization ID from environment variables
9
+ openai.api_key = os.getenv('OPENAI_API_KEY')
10
+ openai.organization = os.getenv('OPENAI_ORG_ID')
11
+
12
+ # Define the model to be used
13
+ MODEL = "gpt-4o"
14
+
15
+ def process_text():
16
+ text_input = st.text_input("Enter your text:")
17
+ if text_input:
18
+ completion = openai.ChatCompletion.create(
19
+ model=MODEL,
20
+ messages=[
21
+ {"role": "system", "content": "You are a helpful assistant. Help me with my math homework!"},
22
+ {"role": "user", "content": f"Hello! Could you solve {text_input}?"}
23
+ ]
24
+ )
25
+ st.write("Assistant: " + completion.choices[0].message["content"])
26
+
27
+ def process_image(image_input):
28
+ if image_input:
29
+ base64_image = base64.b64encode(image_input.read()).decode("utf-8")
30
+ response = openai.ChatCompletion.create(
31
+ model=MODEL,
32
+ messages=[
33
+ {"role": "system", "content": "You are a helpful assistant that responds in Markdown. Help me with my math homework!"},
34
+ {"role": "user", "content": [
35
+ {"type": "text", "text": "What's the area of the triangle?"},
36
+ {"type": "image_url", "image_url": {
37
+ "url": f"data:image/png;base64,{base64_image}"}
38
+ }
39
+ ]}
40
+ ],
41
+ temperature=0.0,
42
+ )
43
+ st.markdown(response.choices[0].message["content"])
44
+
45
+ def process_audio(audio_input):
46
+ if audio_input:
47
+ transcription = openai.Audio.transcriptions.create(
48
+ model="whisper-1",
49
+ file=audio_input,
50
+ )
51
+ response = openai.ChatCompletion.create(
52
+ model=MODEL,
53
+ messages=[
54
+ {"role": "system", "content": "You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."},
55
+ {"role": "user", "content": [
56
+ {"type": "text", "text": f"The audio transcription is: {transcription.text}"}
57
+ ]},
58
+ ],
59
+ temperature=0,
60
+ )
61
+ st.markdown(response.choices[0].message["content"])
62
+
63
+ def process_video(video_input):
64
+ if video_input:
65
+ base64Frames, audio_path = process_video_frames(video_input)
66
+ transcription = openai.Audio.transcriptions.create(
67
+ model="whisper-1",
68
+ file=open(audio_path, "rb"),
69
+ )
70
+ response = openai.ChatCompletion.create(
71
+ model=MODEL,
72
+ messages=[
73
+ {"role": "system", "content": "You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"},
74
+ {"role": "user", "content": [
75
+ "These are the frames from the video.",
76
+ *map(lambda x: {"type": "image_url",
77
+ "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames),
78
+ {"type": "text", "text": f"The audio transcription is: {transcription.text}"}
79
+ ]},
80
+ ],
81
+ temperature=0,
82
+ )
83
+ st.markdown(response.choices[0].message["content"])
84
+
85
+ def process_video_frames(video_path, seconds_per_frame=2):
86
+ base64Frames = []
87
+ base_video_path, _ = os.path.splitext(video_path.name)
88
+ video = cv2.VideoCapture(video_path.name)
89
+ total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
90
+ fps = video.get(cv2.CAP_PROP_FPS)
91
+ frames_to_skip = int(fps * seconds_per_frame)
92
+ curr_frame = 0
93
+ while curr_frame < total_frames - 1:
94
+ video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
95
+ success, frame = video.read()
96
+ if not success:
97
+ break
98
+ _, buffer = cv2.imencode(".jpg", frame)
99
+ base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
100
+ curr_frame += frames_to_skip
101
+ video.release()
102
+ audio_path = f"{base_video_path}.mp3"
103
+ clip = VideoFileClip(video_path.name)
104
+ clip.audio.write_audiofile(audio_path, bitrate="32k")
105
+ clip.audio.close()
106
+ clip.close()
107
+ return base64Frames, audio_path
108
+
109
+ def main():
110
+ st.title("Omni Demo")
111
+ option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video"))
112
+ if option == "Text":
113
+ process_text()
114
+ elif option == "Image":
115
+ image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
116
+ process_image(image_input)
117
+ elif option == "Audio":
118
+ audio_input = st.file_uploader("Upload an audio file", type=["mp3", "wav"])
119
+ process_audio(audio_input)
120
+ elif option == "Video":
121
+ video_input = st.file_uploader("Upload a video file", type=["mp4"])
122
+ process_video(video_input)
123
+
124
+ if __name__ == "__main__":
125
+ main()