import googlemaps
import os
#GM_TOKEN=os.environ.get("GM_TOKEN") # Get Google Maps Token Here:
from datetime import datetime
gmaps = googlemaps.Client(key='AIzaSyDybq2mxujekZVivmr03Y5-GGHXesn4TLI')
# Geocoding an address
geocode_result = gmaps.geocode('1600 Amphitheatre Parkway, Mountain View, CA')
# Look up an address with reverse geocoding
reverse_geocode_result = gmaps.reverse_geocode((40.714224, -73.961452))
# Request directions via public transit
now = datetime.now()
directions_result = gmaps.directions("Sydney Town Hall",
"Parramatta, NSW",
mode="transit",
departure_time=now)
# Validate an address with address validation
addressvalidation_result = gmaps.addressvalidation(['1600 Amphitheatre Pk'],
regionCode='US',
locality='Mountain View',
enableUspsCass=True)
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
import torch
import gradio as gr
from datasets import load_dataset
# PersistDataset -----
import os
import csv
from gradio import inputs, outputs
import huggingface_hub
from huggingface_hub import Repository, hf_hub_download, upload_file
from datetime import datetime
#fastapi is where its at: share your app, share your api
import fastapi
from typing import List, Dict
import httpx
import pandas as pd
import datasets as ds
UseMemory=True
HF_TOKEN=os.environ.get("HF_TOKEN")
def SaveResult(text, outputfileName):
basedir = os.path.dirname(__file__)
savePath = outputfileName
print("Saving: " + text + " to " + savePath)
from os.path import exists
file_exists = exists(savePath)
if file_exists:
with open(outputfileName, "a") as f: #append
f.write(str(text.replace("\n"," ")))
f.write('\n')
else:
with open(outputfileName, "w") as f: #write
f.write(str("time, message, text\n")) # one time only to get column headers for CSV file
f.write(str(text.replace("\n"," ")))
f.write('\n')
return
def store_message(name: str, message: str, outputfileName: str):
basedir = os.path.dirname(__file__)
savePath = outputfileName
# if file doesnt exist, create it with labels
from os.path import exists
file_exists = exists(savePath)
if (file_exists==False):
with open(savePath, "w") as f: #write
f.write(str("time, message, text\n")) # one time only to get column headers for CSV file
if name and message:
writer = csv.DictWriter(f, fieldnames=["time", "message", "name"])
writer.writerow(
{"time": str(datetime.now()), "message": message.strip(), "name": name.strip() }
)
df = pd.read_csv(savePath)
df = df.sort_values(df.columns[0],ascending=False)
else:
if name and message:
with open(savePath, "a") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=[ "time", "message", "name", ])
writer.writerow(
{"time": str(datetime.now()), "message": message.strip(), "name": name.strip() }
)
df = pd.read_csv(savePath)
df = df.sort_values(df.columns[0],ascending=False)
return df
mname = "facebook/blenderbot-400M-distill"
model = BlenderbotForConditionalGeneration.from_pretrained(mname)
tokenizer = BlenderbotTokenizer.from_pretrained(mname)
def take_last_tokens(inputs, note_history, history):
if inputs['input_ids'].shape[1] > 128:
inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()])
inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()])
note_history = [' '.join(note_history[0].split(' ')[2:])]
history = history[1:]
return inputs, note_history, history
def add_note_to_history(note, note_history):# good example of non async since we wait around til we know it went okay.
note_history.append(note)
note_history = ' '.join(note_history)
return [note_history]
title = "💬ChatBack🧠💾"
description = """Chatbot With persistent memory dataset allowing multiagent system AI to access a shared dataset as memory pool with stored interactions.
Current Best SOTA Chatbot: https://huggingface.co/facebook/blenderbot-400M-distill?text=Hey+my+name+is+ChatBack%21+Are+you+ready+to+rock%3F """
def get_base(filename):
basedir = os.path.dirname(__file__)
print(basedir)
#loadPath = basedir + "\\" + filename # works on windows
loadPath = basedir + filename
print(loadPath)
return loadPath
def chat(message, history):
history = history or []
if history:
history_useful = [' '.join([str(a[0])+' '+str(a[1]) for a in history])]
else:
history_useful = []
history_useful = add_note_to_history(message, history_useful)
inputs = tokenizer(history_useful, return_tensors="pt")
inputs, history_useful, history = take_last_tokens(inputs, history_useful, history)
reply_ids = model.generate(**inputs)
response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]
history_useful = add_note_to_history(response, history_useful)
list_history = history_useful[0].split(' ')
history.append((list_history[-2], list_history[-1]))
df=pd.DataFrame()
if UseMemory:
#outputfileName = 'ChatbotMemory.csv'
outputfileName = 'ChatbotMemory3.csv' # Test first time file create
df = store_message(message, response, outputfileName) # Save to dataset
basedir = get_base(outputfileName)
return history, df, basedir
with gr.Blocks() as demo:
gr.Markdown("🍰 AI Google Maps Demonstration🎨
")
with gr.Row():
t1 = gr.Textbox(lines=1, default="", label="Chat Text:")
b1 = gr.Button("Respond and Retrieve Messages")
with gr.Row(): # inputs and buttons
s1 = gr.State([])
df1 = gr.Dataframe(wrap=True, max_rows=1000, overflow_row_behaviour= "paginate")
with gr.Row(): # inputs and buttons
file = gr.File(label="File")
s2 = gr.Markdown()
b1.click(fn=chat, inputs=[t1, s1], outputs=[s1, df1, file])
demo.launch(debug=True, show_error=True)