File size: 7,787 Bytes
9d37774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import streamlit as st
from multiprocessing import Process
from annotated_text import annotated_text
from bs4 import BeautifulSoup
import pandas as pd
import torch
import math
import re
import json
import requests
import spacy
import errant
import time
import os

def start_server():   
    os.system("python3 -m spacy download en_core_web_sm")
    os.system("uvicorn InferenceServer:app --port 8080 --host 0.0.0.0 --workers 2")

def load_models():
    if not is_port_in_use(8080):
        with st.spinner(text="Loading models, please wait..."):
            proc = Process(target=start_server, args=(), daemon=True)
            proc.start()
            while not is_port_in_use(8080):
                time.sleep(1)
            st.success("Model server started.")
    else:
        st.success("Model server already running...")
    st.session_state['models_loaded'] = True

def is_port_in_use(port):
    import socket
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
        return s.connect_ex(('0.0.0.0', port)) == 0

if 'models_loaded' not in st.session_state:
    st.session_state['models_loaded'] = False


def show_highlights(input_text, corrected_sentence):
    try:
        strikeout = lambda x: '\u0336'.join(x) + '\u0336'
        highlight_text = highlight(input_text, corrected_sentence)
        color_map = {'d':'#faa', 'a':'#afa', 'c':'#fea'}
        tokens = re.split(r'(<[dac]\s.*?<\/[dac]>)', highlight_text)
        annotations = []
        for token in tokens:
            soup = BeautifulSoup(token, 'html.parser')
            tags = soup.findAll()
            if tags:
                _tag = tags[0].name
                _type = tags[0]['type']
                _text = tags[0]['edit']
                _color = color_map[_tag]

                if _tag == 'd':
                    _text = strikeout(tags[0].text)

                annotations.append((_text, _type, _color))
            else:
                annotations.append(token)
        annotated_text(*annotations)
    except Exception as e:
        st.error('Some error occured!' + str(e))
        st.stop()

def show_edits(input_text, corrected_sentence):
    try:
        edits = get_edits(input_text, corrected_sentence)
        df = pd.DataFrame(edits, columns=['type','original word', 'original start', 'original end', 'correct word', 'correct start', 'correct end'])
        df = df.set_index('type')
        st.table(df)
    except Exception as e:
        st.error('Some error occured!')
        st.stop()

def highlight(orig, cor):
      edits = _get_edits(orig, cor)
      orig_tokens = orig.split()

      ignore_indexes = []

      for edit in edits:
          edit_type = edit[0]
          edit_str_start = edit[1]
          edit_spos = edit[2]
          edit_epos = edit[3]
          edit_str_end = edit[4]

          # if no_of_tokens(edit_str_start) > 1 ==> excluding the first token, mark all other tokens for deletion
          for i in range(edit_spos+1, edit_epos):
            ignore_indexes.append(i)

          if edit_str_start == "":
              if edit_spos - 1 >= 0:
                  new_edit_str = orig_tokens[edit_spos - 1]
                  edit_spos -= 1
              else:
                  new_edit_str = orig_tokens[edit_spos + 1]
                  edit_spos += 1
              if edit_type == "PUNCT":
                st = "<a type='" + edit_type + "' edit='" + \
                    edit_str_end + "'>" + new_edit_str + "</a>"
              else:
                st = "<a type='" + edit_type + "' edit='" + new_edit_str + \
                    " " + edit_str_end + "'>" + new_edit_str + "</a>"
              orig_tokens[edit_spos] = st
          elif edit_str_end == "":
            st = "<d type='" + edit_type + "' edit=''>" + edit_str_start + "</d>"
            orig_tokens[edit_spos] = st
          else:
            st = "<c type='" + edit_type + "' edit='" + \
                edit_str_end + "'>" + edit_str_start + "</c>"
            orig_tokens[edit_spos] = st

      for i in sorted(ignore_indexes, reverse=True):
        del(orig_tokens[i])

      return(" ".join(orig_tokens))


def _get_edits(orig, cor):
    orig = annotator.parse(orig)
    cor = annotator.parse(cor)
    alignment = annotator.align(orig, cor)
    edits = annotator.merge(alignment)

    if len(edits) == 0:  
        return []

    edit_annotations = []
    for e in edits:
        e = annotator.classify(e)
        edit_annotations.append((e.type[2:], e.o_str, e.o_start, e.o_end,  e.c_str, e.c_start, e.c_end))
            
    if len(edit_annotations) > 0:
        return edit_annotations
    else:    
        return []

def get_edits(orig, cor):
    return _get_edits(orig, cor)        

def get_correction(input_text):
    correct_request = "http://0.0.0.0:8080/correct?input_sentence="+input_text
    correct_response = requests.get(correct_request)
    correct_json = json.loads(correct_response.text)
    scored_corrected_sentence = correct_json["scored_corrected_sentence"]
    
    corrected_sentence, score = scored_corrected_sentence
    st.markdown(f'##### Corrected text:')
    st.write('')
    st.success(corrected_sentence)
    exp1 = st.expander(label='Show highlights', expanded=True)
    with exp1:
        show_highlights(input_text, corrected_sentence)
    exp2 = st.expander(label='Show edits')
    with exp2:
        show_edits(input_text, corrected_sentence)
          
        
if __name__ == "__main__":
    
        st.title('Gramformer - A Python library')
        st.subheader('To detect and correct grammar errors')
        st.markdown("Built with ๐Ÿ’™  by Prithivi Da, The maker of [WhatTheFood](https://huggingface.co/spaces/prithivida/WhatTheFood), [Styleformer](https://github.com/PrithivirajDamodaran/Styleformer) and [Parrot paraphraser](https://github.com/PrithivirajDamodaran/Parrot_Paraphraser) | [Checkout the GitHub page for details](https://github.com/PrithivirajDamodaran/Gramformer) | โœ๏ธ [@prithivida](https://twitter.com/prithivida) ", unsafe_allow_html=True)
        st.markdown("<p style='color:blue; display:inline'> Integrate with your app with just 2 lines of code </p>", unsafe_allow_html=True)
        st.markdown("""
                    ```python 
                    gf = Gramformer(models = 1, use_gpu=False)
                    corrected_sentences = gf.correct(influent_sentence, max_candidates=1)
                    ```    
                    """)

        examples = [
                     "what be the reason for everyone leave the comapny",
                    "They're house is on fire",
                    "Look if their is fire on the top",
                    "Where is you're car?",
                    "Its going to rain",
                    "Feel free reach out to me",
                    "Life is shortest so live freely",
                    "We do the boy actually stole the books",
                    "I am doing fine. How is you?",
                    "Each of you all should run fast", 
                    "Matt like fish",
                    "We enjoys horror movies",
                    "I walk to the store and I bought milk",
                    " We all eat the fish and then made dessert",
                    ]

        if not st.session_state['models_loaded']:
            load_models()                     

        import en_core_web_sm
        nlp = en_core_web_sm.load()
        annotator = errant.load('en', nlp)

        st.markdown(f'##### Try it now:')
        input_text = st.selectbox(
        label="Choose an example",
        options=examples
        )
        st.write("(or)")
        input_text = st.text_input(
            label="Bring your own sentence",
            value=input_text
        )

        if input_text.strip(): 
            get_correction(input_text)