File size: 4,990 Bytes
d4b629f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0370f84
d4b629f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import torchvision.transforms as transforms
import os  # 📁 For file operations

# 🧠 Neural network layers
norm_layer = nn.InstanceNorm2d

# 🧱 Building block for the generator
class ResidualBlock(nn.Module):
    def __init__(self, in_features):
        super(ResidualBlock, self).__init__()

        conv_block = [  nn.ReflectionPad2d(1),
                        nn.Conv2d(in_features, in_features, 3),
                        norm_layer(in_features),
                        nn.ReLU(inplace=True),
                        nn.ReflectionPad2d(1),
                        nn.Conv2d(in_features, in_features, 3),
                        norm_layer(in_features)
                        ]

        self.conv_block = nn.Sequential(*conv_block)

    def forward(self, x):
        return x + self.conv_block(x)

# 🎨 Generator model for creating line drawings
class Generator(nn.Module):
    def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
        super(Generator, self).__init__()

        # 🏁 Initial convolution block
        model0 = [   nn.ReflectionPad2d(3),
                    nn.Conv2d(input_nc, 64, 7),
                    norm_layer(64),
                    nn.ReLU(inplace=True) ]
        self.model0 = nn.Sequential(*model0)

        # 🔽 Downsampling
        model1 = []
        in_features = 64
        out_features = in_features*2
        for _ in range(2):
            model1 += [  nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
                        norm_layer(out_features),
                        nn.ReLU(inplace=True) ]
            in_features = out_features
            out_features = in_features*2
        self.model1 = nn.Sequential(*model1)

        # 🔁 Residual blocks
        model2 = []
        for _ in range(n_residual_blocks):
            model2 += [ResidualBlock(in_features)]
        self.model2 = nn.Sequential(*model2)

        # 🔼 Upsampling
        model3 = []
        out_features = in_features//2
        for _ in range(2):
            model3 += [  nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
                        norm_layer(out_features),
                        nn.ReLU(inplace=True) ]
            in_features = out_features
            out_features = in_features//2
        self.model3 = nn.Sequential(*model3)

        # 🎭 Output layer
        model4 = [  nn.ReflectionPad2d(3),
                        nn.Conv2d(64, output_nc, 7)]
        if sigmoid:
            model4 += [nn.Sigmoid()]

        self.model4 = nn.Sequential(*model4)

    def forward(self, x, cond=None):
        out = self.model0(x)
        out = self.model1(out)
        out = self.model2(out)
        out = self.model3(out)
        out = self.model4(out)

        return out

# 🔧 Load the models
model1 = Generator(3, 1, 3)
model1.load_state_dict(torch.load('model.pth', map_location=torch.device('cpu'), weights_only=True))
model1.eval()

model2 = Generator(3, 1, 3)
model2.load_state_dict(torch.load('model2.pth', map_location=torch.device('cpu'), weights_only=True))
model2.eval()

# 🖼️ Function to process the image and create line drawing
def predict(input_img, ver):
    # Open the image and get its original size
    original_img = Image.open(input_img)
    original_size = original_img.size

    # Define the transformation pipeline
    transform = transforms.Compose([
        transforms.Resize(256, Image.BICUBIC),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    # Apply the transformation
    input_tensor = transform(original_img)
    input_tensor = input_tensor.unsqueeze(0)

    # Process the image through the model
    with torch.no_grad():
        if ver == 'Simple Lines':
            output = model2(input_tensor)
        else:
            output = model1(input_tensor)

    # Convert the output tensor to an image
    output_img = transforms.ToPILImage()(output.squeeze().cpu().clamp(0, 1))

    # Resize the output image back to the original size
    output_img = output_img.resize(original_size, Image.BICUBIC)

    return output_img

# 📝 Title for the Gradio interface
title="🖌️ Image to Artistic Drawing"

# 🖼️ Dynamically generate examples from images in the directory
examples = []
image_dir = '.'  # Assuming images are in the current directory
for file in os.listdir(image_dir):
    if file.lower().endswith(('.png', '.jpg', '.jpeg', '.gif')):
        examples.append([file, 'Simple Lines'])
        examples.append([file, 'Complex Lines'])

# 🚀 Create and launch the Gradio interface
iface = gr.Interface(
    fn=predict, 
    inputs=[
        gr.Image(type='filepath'),
        gr.Radio(['Complex Lines', 'Simple Lines'], label='version', value='Simple Lines')
    ],
    outputs=gr.Image(type="pil"),
    title=title,
    examples=examples
)

iface.launch()