Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,457 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import json
|
4 |
+
import base64
|
5 |
+
from datetime import datetime
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import gradio as gr
|
9 |
+
from gradio_imageslider import ImageSlider
|
10 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, DDIMScheduler
|
11 |
+
from controlnet_aux import AnylineDetector
|
12 |
+
from compel import Compel, ReturnedEmbeddingsType
|
13 |
+
from PIL import Image
|
14 |
+
import pandas as pd
|
15 |
+
|
16 |
+
# Configuration
|
17 |
+
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
18 |
+
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
|
19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
+
dtype = torch.float16
|
21 |
+
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
|
22 |
+
|
23 |
+
print(f"device: {device}")
|
24 |
+
print(f"dtype: {dtype}")
|
25 |
+
print(f"low memory: {LOW_MEMORY}")
|
26 |
+
|
27 |
+
# Model initialization
|
28 |
+
model = "stabilityai/stable-diffusion-xl-base-1.0"
|
29 |
+
scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler")
|
30 |
+
controlnet = ControlNetModel.from_pretrained(
|
31 |
+
"TheMistoAI/MistoLine",
|
32 |
+
torch_dtype=torch.float16,
|
33 |
+
revision="refs/pr/3",
|
34 |
+
variant="fp16",
|
35 |
+
)
|
36 |
+
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
37 |
+
model,
|
38 |
+
controlnet=controlnet,
|
39 |
+
torch_dtype=dtype,
|
40 |
+
variant="fp16",
|
41 |
+
use_safetensors=True,
|
42 |
+
scheduler=scheduler,
|
43 |
+
)
|
44 |
+
|
45 |
+
compel = Compel(
|
46 |
+
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
47 |
+
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
48 |
+
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
49 |
+
requires_pooled=[False, True],
|
50 |
+
)
|
51 |
+
pipe = pipe.to(device)
|
52 |
+
|
53 |
+
anyline = AnylineDetector.from_pretrained(
|
54 |
+
"TheMistoAI/MistoLine", filename="MTEED.pth", subfolder="Anyline"
|
55 |
+
).to(device)
|
56 |
+
|
57 |
+
# Global variables for metadata and likes cache
|
58 |
+
image_metadata = pd.DataFrame(columns=['Filename', 'Prompt', 'Likes', 'Dislikes', 'Hearts', 'Created'])
|
59 |
+
LIKES_CACHE_FILE = "likes_cache.json"
|
60 |
+
|
61 |
+
def load_likes_cache():
|
62 |
+
if os.path.exists(LIKES_CACHE_FILE):
|
63 |
+
with open(LIKES_CACHE_FILE, 'r') as f:
|
64 |
+
return json.load(f)
|
65 |
+
return {}
|
66 |
+
|
67 |
+
def save_likes_cache(cache):
|
68 |
+
with open(LIKES_CACHE_FILE, 'w') as f:
|
69 |
+
json.dump(cache, f)
|
70 |
+
|
71 |
+
likes_cache = load_likes_cache()
|
72 |
+
|
73 |
+
def pad_image(image):
|
74 |
+
w, h = image.size
|
75 |
+
if w == h:
|
76 |
+
return image
|
77 |
+
elif w > h:
|
78 |
+
new_image = Image.new(image.mode, (w, w), (0, 0, 0))
|
79 |
+
new_image.paste(image, (0, (w - h) // 2))
|
80 |
+
return new_image
|
81 |
+
else:
|
82 |
+
new_image = Image.new(image.mode, (h, h), (0, 0, 0))
|
83 |
+
new_image.paste(image, ((h - w) // 2, 0))
|
84 |
+
return new_image
|
85 |
+
|
86 |
+
def create_download_link(filename):
|
87 |
+
with open(filename, "rb") as file:
|
88 |
+
encoded_string = base64.b64encode(file.read()).decode('utf-8')
|
89 |
+
download_link = f'<a href="data:image/png;base64,{encoded_string}" download="{filename}">Download Image</a>'
|
90 |
+
return download_link
|
91 |
+
|
92 |
+
def save_image(image: Image.Image, prompt: str) -> str:
|
93 |
+
global image_metadata, likes_cache
|
94 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
95 |
+
safe_prompt = ''.join(e for e in prompt if e.isalnum() or e.isspace())[:50]
|
96 |
+
filename = f"{timestamp}_{safe_prompt}.png"
|
97 |
+
image.save(filename)
|
98 |
+
new_row = pd.DataFrame({
|
99 |
+
'Filename': [filename],
|
100 |
+
'Prompt': [prompt],
|
101 |
+
'Likes': [0],
|
102 |
+
'Dislikes': [0],
|
103 |
+
'Hearts': [0],
|
104 |
+
'Created': [datetime.now()]
|
105 |
+
})
|
106 |
+
image_metadata = pd.concat([image_metadata, new_row], ignore_index=True)
|
107 |
+
likes_cache[filename] = {'likes': 0, 'dislikes': 0, 'hearts': 0}
|
108 |
+
save_likes_cache(likes_cache)
|
109 |
+
return filename
|
110 |
+
|
111 |
+
def get_image_gallery():
|
112 |
+
global image_metadata
|
113 |
+
image_files = image_metadata['Filename'].tolist()
|
114 |
+
return [(file, get_image_caption(file)) for file in image_files if os.path.exists(file)]
|
115 |
+
|
116 |
+
def get_image_caption(filename):
|
117 |
+
global likes_cache, image_metadata
|
118 |
+
if filename in likes_cache:
|
119 |
+
likes = likes_cache[filename]['likes']
|
120 |
+
dislikes = likes_cache[filename]['dislikes']
|
121 |
+
hearts = likes_cache[filename]['hearts']
|
122 |
+
prompt = image_metadata[image_metadata['Filename'] == filename]['Prompt'].values[0]
|
123 |
+
return f"{filename}\nPrompt: {prompt}\n👍 {likes} 👎 {dislikes} ❤️ {hearts}"
|
124 |
+
return filename
|
125 |
+
|
126 |
+
def delete_all_images():
|
127 |
+
global image_metadata, likes_cache
|
128 |
+
for file in image_metadata['Filename']:
|
129 |
+
if os.path.exists(file):
|
130 |
+
os.remove(file)
|
131 |
+
image_metadata = pd.DataFrame(columns=['Filename', 'Prompt', 'Likes', 'Dislikes', 'Hearts', 'Created'])
|
132 |
+
likes_cache = {}
|
133 |
+
save_likes_cache(likes_cache)
|
134 |
+
return get_image_gallery(), image_metadata.values.tolist()
|
135 |
+
|
136 |
+
def delete_image(filename):
|
137 |
+
global image_metadata, likes_cache
|
138 |
+
if filename and os.path.exists(filename):
|
139 |
+
os.remove(filename)
|
140 |
+
image_metadata = image_metadata[image_metadata['Filename'] != filename]
|
141 |
+
if filename in likes_cache:
|
142 |
+
del likes_cache[filename]
|
143 |
+
save_likes_cache(likes_cache)
|
144 |
+
return get_image_gallery(), image_metadata.values.tolist()
|
145 |
+
|
146 |
+
def vote(filename, vote_type):
|
147 |
+
global likes_cache
|
148 |
+
if filename in likes_cache:
|
149 |
+
likes_cache[filename][vote_type.lower()] += 1
|
150 |
+
save_likes_cache(likes_cache)
|
151 |
+
return get_image_gallery(), image_metadata.values.tolist()
|
152 |
+
|
153 |
+
@gr.on(queue_pred_done=True)
|
154 |
+
def predict(
|
155 |
+
input_image,
|
156 |
+
prompt,
|
157 |
+
negative_prompt,
|
158 |
+
seed,
|
159 |
+
guidance_scale=8.5,
|
160 |
+
controlnet_conditioning_scale=0.5,
|
161 |
+
strength=1.0,
|
162 |
+
controlnet_start=0.0,
|
163 |
+
controlnet_end=1.0,
|
164 |
+
guassian_sigma=2.0,
|
165 |
+
intensity_threshold=3,
|
166 |
+
progress=gr.Progress(track_tqdm=True),
|
167 |
+
):
|
168 |
+
if input_image is None:
|
169 |
+
raise gr.Error("Please upload an image.")
|
170 |
+
padded_image = pad_image(input_image).resize((1024, 1024)).convert("RGB")
|
171 |
+
conditioning, pooled = compel([prompt, negative_prompt])
|
172 |
+
generator = torch.manual_seed(seed)
|
173 |
+
last_time = time.time()
|
174 |
+
anyline_image = anyline(
|
175 |
+
padded_image,
|
176 |
+
detect_resolution=1280,
|
177 |
+
guassian_sigma=max(0.01, guassian_sigma),
|
178 |
+
intensity_threshold=intensity_threshold,
|
179 |
+
)
|
180 |
+
|
181 |
+
images = pipe(
|
182 |
+
image=padded_image,
|
183 |
+
control_image=anyline_image,
|
184 |
+
strength=strength,
|
185 |
+
prompt_embeds=conditioning[0:1],
|
186 |
+
pooled_prompt_embeds=pooled[0:1],
|
187 |
+
negative_prompt_embeds=conditioning[1:2],
|
188 |
+
negative_pooled_prompt_embeds=pooled[1:2],
|
189 |
+
width=1024,
|
190 |
+
height=1024,
|
191 |
+
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
192 |
+
controlnet_start=float(controlnet_start),
|
193 |
+
controlnet_end=float(controlnet_end),
|
194 |
+
generator=generator,
|
195 |
+
num_inference_steps=30,
|
196 |
+
guidance_scale=guidance_scale,
|
197 |
+
eta=1.0,
|
198 |
+
)
|
199 |
+
print(f"Time taken: {time.time() - last_time}")
|
200 |
+
generated_image = images.images[0]
|
201 |
+
filename = save_image(generated_image, prompt)
|
202 |
+
download_link = create_download_link(filename)
|
203 |
+
return (padded_image, generated_image), padded_image, anyline_image, download_link, get_image_gallery(), image_metadata.values.tolist()
|
204 |
+
|
205 |
+
css = """
|
206 |
+
#intro {
|
207 |
+
max-width: 100%;
|
208 |
+
text-align: center;
|
209 |
+
margin: 0 auto;
|
210 |
+
}
|
211 |
+
.gradio-container {max-width: 1200px !important}
|
212 |
+
footer {visibility: hidden}
|
213 |
+
"""
|
214 |
+
|
215 |
+
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
216 |
+
gr.Markdown(
|
217 |
+
"""
|
218 |
+
# 🎨 ArtForge: MistoLine ControlNet Masterpiece Gallery
|
219 |
+
|
220 |
+
Create, curate, and compete with AI-enhanced images using MistoLine ControlNet. Join our creative multiplayer experience! 🖼️🏆✨
|
221 |
+
|
222 |
+
This demo showcases the capabilities of [TheMistoAI/MistoLine](https://huggingface.co/TheMistoAI/MistoLine) ControlNet with SDXL.
|
223 |
+
|
224 |
+
- SDXL Controlnet: [TheMistoAI/MistoLine](https://huggingface.co/TheMistoAI/MistoLine)
|
225 |
+
- [Anyline with Controlnet Aux](https://github.com/huggingface/controlnet_aux)
|
226 |
+
- For upscaling, see [Enhance This Demo](https://huggingface.co/spaces/radames/Enhance-This-HiDiffusion-SDXL)
|
227 |
+
""",
|
228 |
+
elem_id="intro",
|
229 |
+
)
|
230 |
+
|
231 |
+
with gr.Tab("Generate Images"):
|
232 |
+
with gr.Row():
|
233 |
+
with gr.Column(scale=1):
|
234 |
+
image_input = gr.Image(type="pil", label="Input Image")
|
235 |
+
prompt = gr.Textbox(
|
236 |
+
label="Prompt",
|
237 |
+
info="The prompt is very important to get the desired results. Please try to describe the image as best as you can. Accepts Compel Syntax",
|
238 |
+
)
|
239 |
+
negative_prompt = gr.Textbox(
|
240 |
+
label="Negative Prompt",
|
241 |
+
value="blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
242 |
+
)
|
243 |
+
seed = gr.Slider(
|
244 |
+
minimum=0,
|
245 |
+
maximum=2**64 - 1,
|
246 |
+
value=1415926535897932,
|
247 |
+
step=1,
|
248 |
+
label="Seed",
|
249 |
+
randomize=True,
|
250 |
+
)
|
251 |
+
with gr.Accordion(label="Advanced", open=False):
|
252 |
+
guidance_scale = gr.Slider(
|
253 |
+
minimum=0,
|
254 |
+
maximum=50,
|
255 |
+
value=8.5,
|
256 |
+
step=0.001,
|
257 |
+
label="Guidance Scale",
|
258 |
+
)
|
259 |
+
controlnet_conditioning_scale = gr.Slider(
|
260 |
+
minimum=0,
|
261 |
+
maximum=1,
|
262 |
+
step=0.001,
|
263 |
+
value=0.5,
|
264 |
+
label="ControlNet Conditioning Scale",
|
265 |
+
)
|
266 |
+
strength = gr.Slider(
|
267 |
+
minimum=0,
|
268 |
+
maximum=1,
|
269 |
+
step=0.001,
|
270 |
+
value=1,
|
271 |
+
label="Strength",
|
272 |
+
)
|
273 |
+
controlnet_start = gr.Slider(
|
274 |
+
minimum=0,
|
275 |
+
maximum=1,
|
276 |
+
step=0.001,
|
277 |
+
value=0.0,
|
278 |
+
label="ControlNet Start",
|
279 |
+
)
|
280 |
+
controlnet_end = gr.Slider(
|
281 |
+
minimum=0.0,
|
282 |
+
maximum=1.0,
|
283 |
+
step=0.001,
|
284 |
+
value=1.0,
|
285 |
+
label="ControlNet End",
|
286 |
+
)
|
287 |
+
guassian_sigma = gr.Slider(
|
288 |
+
minimum=0.01,
|
289 |
+
maximum=10.0,
|
290 |
+
step=0.1,
|
291 |
+
value=2.0,
|
292 |
+
label="(Anyline) Guassian Sigma",
|
293 |
+
)
|
294 |
+
intensity_threshold = gr.Slider(
|
295 |
+
minimum=0,
|
296 |
+
maximum=255,
|
297 |
+
step=1,
|
298 |
+
value=3,
|
299 |
+
label="(Anyline) Intensity Threshold",
|
300 |
+
)
|
301 |
+
|
302 |
+
btn = gr.Button("Generate")
|
303 |
+
with gr.Column(scale=2):
|
304 |
+
with gr.Group():
|
305 |
+
image_slider = ImageSlider(position=0.5)
|
306 |
+
with gr.Row():
|
307 |
+
padded_image = gr.Image(type="pil", label="Padded Image")
|
308 |
+
anyline_image = gr.Image(type="pil", label="Anyline Image")
|
309 |
+
download_link = gr.HTML(label="Download Generated Image")
|
310 |
+
|
311 |
+
with gr.Tab("Gallery and Voting"):
|
312 |
+
image_gallery = gr.Gallery(label="Generated Images", show_label=True, columns=4, height="auto")
|
313 |
+
|
314 |
+
with gr.Row():
|
315 |
+
like_button = gr.Button("👍 Like")
|
316 |
+
dislike_button = gr.Button("👎 Dislike")
|
317 |
+
heart_button = gr.Button("❤️ Heart")
|
318 |
+
delete_image_button = gr.Button("🗑️ Delete Selected Image")
|
319 |
+
|
320 |
+
selected_image = gr.State(None)
|
321 |
+
|
322 |
+
with gr.Tab("Metadata and Management"):
|
323 |
+
metadata_df = gr.Dataframe(
|
324 |
+
label="Image Metadata",
|
325 |
+
headers=["Filename", "Prompt", "Likes", "Dislikes", "Hearts", "Created"],
|
326 |
+
interactive=False
|
327 |
+
)
|
328 |
+
delete_all_button = gr.Button("🗑️ Delete All Images")
|
329 |
+
|
330 |
+
inputs = [
|
331 |
+
image_input,
|
332 |
+
prompt,
|
333 |
+
negative_prompt,
|
334 |
+
seed,
|
335 |
+
guidance_scale,
|
336 |
+
controlnet_conditioning_scale,
|
337 |
+
strength,
|
338 |
+
controlnet_start,
|
339 |
+
controlnet_end,
|
340 |
+
guassian_sigma,
|
341 |
+
intensity_threshold,
|
342 |
+
]
|
343 |
+
outputs = [image_slider, padded_image, anyline_image, download_link, image_gallery, metadata_df]
|
344 |
+
|
345 |
+
btn.click(fn=predict, inputs=inputs, outputs=outputs)
|
346 |
+
|
347 |
+
image_gallery.select(fn=lambda evt: evt, inputs=[], outputs=[selected_image])
|
348 |
+
|
349 |
+
like_button.click(fn=lambda x: vote(x, 'likes'), inputs=[selected_image], outputs=[image_gallery, metadata_df])
|
350 |
+
dislike_button.click(fn=lambda x: vote(x, 'dislikes'), inputs=[selected_image], outputs=[image_gallery, metadata_df])
|
351 |
+
heart_button.click(fn=lambda x: vote(x, 'hearts'), inputs=[selected_image], outputs=[image_gallery, metadata_df])
|
352 |
+
delete_image_button.click(fn=deletedelete_image_button.click(fn=delete_image, inputs=[selected_image], outputs=[image_gallery, metadata_df])
|
353 |
+
delete_all_button.click(fn=delete_all_images, inputs=[], outputs=[image_gallery, metadata_df])
|
354 |
+
|
355 |
+
demo.load(fn=lambda: (get_image_gallery(), image_metadata.values.tolist()), outputs=[image_gallery, metadata_df])
|
356 |
+
|
357 |
+
gr.Examples(
|
358 |
+
fn=predict,
|
359 |
+
inputs=inputs,
|
360 |
+
outputs=outputs,
|
361 |
+
examples=[
|
362 |
+
[
|
363 |
+
"./examples/city.png",
|
364 |
+
"hyperrealistic surreal cityscape scene at sunset, buildings",
|
365 |
+
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
366 |
+
13113544138610326000,
|
367 |
+
8.5,
|
368 |
+
0.481,
|
369 |
+
1.0,
|
370 |
+
0.0,
|
371 |
+
0.9,
|
372 |
+
2,
|
373 |
+
3,
|
374 |
+
],
|
375 |
+
[
|
376 |
+
"./examples/lara.jpeg",
|
377 |
+
"photography of lara croft 8k high definition award winning",
|
378 |
+
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
379 |
+
5436236241,
|
380 |
+
8.5,
|
381 |
+
0.8,
|
382 |
+
1.0,
|
383 |
+
0.0,
|
384 |
+
0.9,
|
385 |
+
2,
|
386 |
+
3,
|
387 |
+
],
|
388 |
+
[
|
389 |
+
"./examples/cybetruck.jpeg",
|
390 |
+
"photo of tesla cybertruck futuristic car 8k high definition on a sand dune in mars, future",
|
391 |
+
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
392 |
+
383472451451,
|
393 |
+
8.5,
|
394 |
+
0.8,
|
395 |
+
0.8,
|
396 |
+
0.0,
|
397 |
+
0.9,
|
398 |
+
2,
|
399 |
+
3,
|
400 |
+
],
|
401 |
+
[
|
402 |
+
"./examples/jesus.png",
|
403 |
+
"a photorealistic painting of Jesus Christ, 4k high definition",
|
404 |
+
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
405 |
+
13317204146129588000,
|
406 |
+
8.5,
|
407 |
+
0.8,
|
408 |
+
0.8,
|
409 |
+
0.0,
|
410 |
+
0.9,
|
411 |
+
2,
|
412 |
+
3,
|
413 |
+
],
|
414 |
+
[
|
415 |
+
"./examples/anna-sullivan-DioLM8ViiO8-unsplash.jpg",
|
416 |
+
"A crowded stadium with enthusiastic fans watching a daytime sporting event, the stands filled with colorful attire and the sun casting a warm glow",
|
417 |
+
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
418 |
+
5623124123512,
|
419 |
+
8.5,
|
420 |
+
0.8,
|
421 |
+
0.8,
|
422 |
+
0.0,
|
423 |
+
0.9,
|
424 |
+
2,
|
425 |
+
3,
|
426 |
+
],
|
427 |
+
[
|
428 |
+
"./examples/img_aef651cb-2919-499d-aa49-6d4e2e21a56e_1024.jpg",
|
429 |
+
"a large red flower on a black background 4k high definition",
|
430 |
+
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
|
431 |
+
23123412341234,
|
432 |
+
8.5,
|
433 |
+
0.8,
|
434 |
+
0.8,
|
435 |
+
0.0,
|
436 |
+
0.9,
|
437 |
+
2,
|
438 |
+
3,
|
439 |
+
],
|
440 |
+
[
|
441 |
+
"./examples/huggingface.jpg",
|
442 |
+
"photo realistic huggingface human emoji costume, round, yellow, (human skin)+++ (human texture)+++",
|
443 |
+
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic, emoji cartoon, drawing, pixelated",
|
444 |
+
12312353423,
|
445 |
+
15.206,
|
446 |
+
0.364,
|
447 |
+
0.8,
|
448 |
+
0.0,
|
449 |
+
0.9,
|
450 |
+
2,
|
451 |
+
3,
|
452 |
+
],
|
453 |
+
],
|
454 |
+
cache_examples=True,
|
455 |
+
)
|
456 |
+
|
457 |
+
demo.queue(concurrency_count=1, max_size=20).launch(debug=True)
|