Spaces:
Runtime error
Runtime error
import streamlit as st | |
import transformers | |
import numpy as np | |
# Load the pre-trained model | |
model1 = transformers.pipeline("text2text-generation", model="bigscience/T0pp") | |
model2 = transformers.pipeline("text2text-generation", model="google/flan-t5-xxl") | |
model3 = transformers.pipeline("text2text-generation", model="google/flan-t5-xl") | |
model4 = transformers.pipeline("text2text-generation", model="tuner007/pegasus_paraphrase") | |
model5 = transformers.pipeline("text2text-generation", model="tuner007/pegasus_paraphrase") | |
# Define the Streamlit app | |
def main(): | |
st.title("Topic Modeling with Hugging Face") | |
text = st.text_area("Enter some text to generate topics", height=200) | |
if st.button("Generate Topics"): | |
# Generate topics | |
topics1 = model1(text, max_length=50, do_sample=True, num_beams=5, temperature=0.7) | |
topics2 = model2(text, max_length=50, do_sample=True, num_beams=5, temperature=0.7) | |
topics3 = model3(text, max_length=50, do_sample=True, num_beams=5, temperature=0.7) | |
topics4 = model4(text, max_length=50, do_sample=True, num_beams=5, temperature=0.7) | |
topics5 = model5(text, max_length=50, do_sample=True, num_beams=5, temperature=0.7) | |
# Print topics | |
st.write("Top 5 topics:") | |
for i in range(5): | |
st.write(f"{i+1}. {topics1[i]['generated_text']}") | |
st.write(f"{i+1}. {topics2[i]['generated_text']}") | |
st.write(f"{i+1}. {topics3[i]['generated_text']}") | |
st.write(f"{i+1}. {topics4[i]['generated_text']}") | |
st.write(f"{i+1}. {topics5[i]['generated_text']}") | |
if __name__ == "__main__": | |
main() | |