File size: 8,420 Bytes
1086a9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
#############################################################
# File: esa.py
# Created Date: Tuesday April 28th 2022
# Author: Chen Xuanhong
# Email: chenxuanhongzju@outlook.com
# Last Modified:  Thursday, 20th April 2023 9:28:06 am
# Modified By: Chen Xuanhong
# Copyright (c) 2020 Shanghai Jiao Tong University
#############################################################

import torch
import torch.nn as nn
import torch.nn.functional as F

from .layernorm import LayerNorm2d


def moment(x, dim=(2, 3), k=2):
    assert len(x.size()) == 4
    mean = torch.mean(x, dim=dim).unsqueeze(-1).unsqueeze(-1)
    mk = (1 / (x.size(2) * x.size(3))) * torch.sum(torch.pow(x - mean, k), dim=dim)
    return mk


class ESA(nn.Module):
    """
    Modification of Enhanced Spatial Attention (ESA), which is proposed by
    `Residual Feature Aggregation Network for Image Super-Resolution`
    Note: `conv_max` and `conv3_` are NOT used here, so the corresponding codes
    are deleted.
    """

    def __init__(self, esa_channels, n_feats, conv=nn.Conv2d):
        super(ESA, self).__init__()
        f = esa_channels
        self.conv1 = conv(n_feats, f, kernel_size=1)
        self.conv_f = conv(f, f, kernel_size=1)
        self.conv2 = conv(f, f, kernel_size=3, stride=2, padding=0)
        self.conv3 = conv(f, f, kernel_size=3, padding=1)
        self.conv4 = conv(f, n_feats, kernel_size=1)
        self.sigmoid = nn.Sigmoid()
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        c1_ = self.conv1(x)
        c1 = self.conv2(c1_)
        v_max = F.max_pool2d(c1, kernel_size=7, stride=3)
        c3 = self.conv3(v_max)
        c3 = F.interpolate(
            c3, (x.size(2), x.size(3)), mode="bilinear", align_corners=False
        )
        cf = self.conv_f(c1_)
        c4 = self.conv4(c3 + cf)
        m = self.sigmoid(c4)
        return x * m


class LK_ESA(nn.Module):
    def __init__(
        self, esa_channels, n_feats, conv=nn.Conv2d, kernel_expand=1, bias=True
    ):
        super(LK_ESA, self).__init__()
        f = esa_channels
        self.conv1 = conv(n_feats, f, kernel_size=1)
        self.conv_f = conv(f, f, kernel_size=1)

        kernel_size = 17
        kernel_expand = kernel_expand
        padding = kernel_size // 2

        self.vec_conv = nn.Conv2d(
            in_channels=f * kernel_expand,
            out_channels=f * kernel_expand,
            kernel_size=(1, kernel_size),
            padding=(0, padding),
            groups=2,
            bias=bias,
        )
        self.vec_conv3x1 = nn.Conv2d(
            in_channels=f * kernel_expand,
            out_channels=f * kernel_expand,
            kernel_size=(1, 3),
            padding=(0, 1),
            groups=2,
            bias=bias,
        )

        self.hor_conv = nn.Conv2d(
            in_channels=f * kernel_expand,
            out_channels=f * kernel_expand,
            kernel_size=(kernel_size, 1),
            padding=(padding, 0),
            groups=2,
            bias=bias,
        )
        self.hor_conv1x3 = nn.Conv2d(
            in_channels=f * kernel_expand,
            out_channels=f * kernel_expand,
            kernel_size=(3, 1),
            padding=(1, 0),
            groups=2,
            bias=bias,
        )

        self.conv4 = conv(f, n_feats, kernel_size=1)
        self.sigmoid = nn.Sigmoid()
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        c1_ = self.conv1(x)

        res = self.vec_conv(c1_) + self.vec_conv3x1(c1_)
        res = self.hor_conv(res) + self.hor_conv1x3(res)

        cf = self.conv_f(c1_)
        c4 = self.conv4(res + cf)
        m = self.sigmoid(c4)
        return x * m


class LK_ESA_LN(nn.Module):
    def __init__(
        self, esa_channels, n_feats, conv=nn.Conv2d, kernel_expand=1, bias=True
    ):
        super(LK_ESA_LN, self).__init__()
        f = esa_channels
        self.conv1 = conv(n_feats, f, kernel_size=1)
        self.conv_f = conv(f, f, kernel_size=1)

        kernel_size = 17
        kernel_expand = kernel_expand
        padding = kernel_size // 2

        self.norm = LayerNorm2d(n_feats)

        self.vec_conv = nn.Conv2d(
            in_channels=f * kernel_expand,
            out_channels=f * kernel_expand,
            kernel_size=(1, kernel_size),
            padding=(0, padding),
            groups=2,
            bias=bias,
        )
        self.vec_conv3x1 = nn.Conv2d(
            in_channels=f * kernel_expand,
            out_channels=f * kernel_expand,
            kernel_size=(1, 3),
            padding=(0, 1),
            groups=2,
            bias=bias,
        )

        self.hor_conv = nn.Conv2d(
            in_channels=f * kernel_expand,
            out_channels=f * kernel_expand,
            kernel_size=(kernel_size, 1),
            padding=(padding, 0),
            groups=2,
            bias=bias,
        )
        self.hor_conv1x3 = nn.Conv2d(
            in_channels=f * kernel_expand,
            out_channels=f * kernel_expand,
            kernel_size=(3, 1),
            padding=(1, 0),
            groups=2,
            bias=bias,
        )

        self.conv4 = conv(f, n_feats, kernel_size=1)
        self.sigmoid = nn.Sigmoid()
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        c1_ = self.norm(x)
        c1_ = self.conv1(c1_)

        res = self.vec_conv(c1_) + self.vec_conv3x1(c1_)
        res = self.hor_conv(res) + self.hor_conv1x3(res)

        cf = self.conv_f(c1_)
        c4 = self.conv4(res + cf)
        m = self.sigmoid(c4)
        return x * m


class AdaGuidedFilter(nn.Module):
    def __init__(
        self, esa_channels, n_feats, conv=nn.Conv2d, kernel_expand=1, bias=True
    ):
        super(AdaGuidedFilter, self).__init__()

        self.gap = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Conv2d(
            in_channels=n_feats,
            out_channels=1,
            kernel_size=1,
            padding=0,
            stride=1,
            groups=1,
            bias=True,
        )

        self.r = 5

    def box_filter(self, x, r):
        channel = x.shape[1]
        kernel_size = 2 * r + 1
        weight = 1.0 / (kernel_size**2)
        box_kernel = weight * torch.ones(
            (channel, 1, kernel_size, kernel_size), dtype=torch.float32, device=x.device
        )
        output = F.conv2d(x, weight=box_kernel, stride=1, padding=r, groups=channel)
        return output

    def forward(self, x):
        _, _, H, W = x.shape
        N = self.box_filter(
            torch.ones((1, 1, H, W), dtype=x.dtype, device=x.device), self.r
        )

        # epsilon = self.fc(self.gap(x))
        # epsilon = torch.pow(epsilon, 2)
        epsilon = 1e-2

        mean_x = self.box_filter(x, self.r) / N
        var_x = self.box_filter(x * x, self.r) / N - mean_x * mean_x

        A = var_x / (var_x + epsilon)
        b = (1 - A) * mean_x
        m = A * x + b

        # mean_A = self.box_filter(A, self.r) / N
        # mean_b = self.box_filter(b, self.r) / N
        # m = mean_A * x + mean_b
        return x * m


class AdaConvGuidedFilter(nn.Module):
    def __init__(
        self, esa_channels, n_feats, conv=nn.Conv2d, kernel_expand=1, bias=True
    ):
        super(AdaConvGuidedFilter, self).__init__()
        f = esa_channels

        self.conv_f = conv(f, f, kernel_size=1)

        kernel_size = 17
        kernel_expand = kernel_expand
        padding = kernel_size // 2

        self.vec_conv = nn.Conv2d(
            in_channels=f,
            out_channels=f,
            kernel_size=(1, kernel_size),
            padding=(0, padding),
            groups=f,
            bias=bias,
        )

        self.hor_conv = nn.Conv2d(
            in_channels=f,
            out_channels=f,
            kernel_size=(kernel_size, 1),
            padding=(padding, 0),
            groups=f,
            bias=bias,
        )

        self.gap = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Conv2d(
            in_channels=f,
            out_channels=f,
            kernel_size=1,
            padding=0,
            stride=1,
            groups=1,
            bias=True,
        )

    def forward(self, x):
        y = self.vec_conv(x)
        y = self.hor_conv(y)

        sigma = torch.pow(y, 2)
        epsilon = self.fc(self.gap(y))

        weight = sigma / (sigma + epsilon)

        m = weight * x + (1 - weight)

        return x * m