File size: 35,345 Bytes
1086a9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 |
import threading
class AsyncTask:
def __init__(self, args):
self.args = args
self.yields = []
self.results = []
async_tasks = []
def worker():
global async_tasks
import traceback
import math
import numpy as np
import torch
import time
import shared
import random
import copy
import modules.default_pipeline as pipeline
import modules.core as core
import modules.flags as flags
import modules.config
import modules.patch
import ldm_patched.modules.model_management
import extras.preprocessors as preprocessors
import modules.inpaint_worker as inpaint_worker
import modules.constants as constants
import modules.advanced_parameters as advanced_parameters
import extras.ip_adapter as ip_adapter
import extras.face_crop
import fooocus_version
from modules.sdxl_styles import apply_style, apply_wildcards, fooocus_expansion
from modules.private_logger import log
from extras.expansion import safe_str
from modules.util import remove_empty_str, HWC3, resize_image, \
get_image_shape_ceil, set_image_shape_ceil, get_shape_ceil, resample_image
from modules.upscaler import perform_upscale
try:
async_gradio_app = shared.gradio_root
flag = f'''App started successful. Use the app with {str(async_gradio_app.local_url)} or {str(async_gradio_app.server_name)}:{str(async_gradio_app.server_port)}'''
if async_gradio_app.share:
flag += f''' or {async_gradio_app.share_url}'''
print(flag)
except Exception as e:
print(e)
def progressbar(async_task, number, text):
print(f'[Fooocus] {text}')
async_task.yields.append(['preview', (number, text, None)])
def yield_result(async_task, imgs, do_not_show_finished_images=False):
if not isinstance(imgs, list):
imgs = [imgs]
async_task.results = async_task.results + imgs
if do_not_show_finished_images:
return
async_task.yields.append(['results', async_task.results])
return
def build_image_wall(async_task):
if not advanced_parameters.generate_image_grid:
return
results = async_task.results
if len(results) < 2:
return
for img in results:
if not isinstance(img, np.ndarray):
return
if img.ndim != 3:
return
H, W, C = results[0].shape
for img in results:
Hn, Wn, Cn = img.shape
if H != Hn:
return
if W != Wn:
return
if C != Cn:
return
cols = float(len(results)) ** 0.5
cols = int(math.ceil(cols))
rows = float(len(results)) / float(cols)
rows = int(math.ceil(rows))
wall = np.zeros(shape=(H * rows, W * cols, C), dtype=np.uint8)
for y in range(rows):
for x in range(cols):
if y * cols + x < len(results):
img = results[y * cols + x]
wall[y * H:y * H + H, x * W:x * W + W, :] = img
# must use deep copy otherwise gradio is super laggy. Do not use list.append() .
async_task.results = async_task.results + [wall]
return
@torch.no_grad()
@torch.inference_mode()
def handler(async_task):
execution_start_time = time.perf_counter()
args = async_task.args
args.reverse()
prompt = args.pop()
negative_prompt = args.pop()
style_selections = args.pop()
performance_selection = args.pop()
aspect_ratios_selection = args.pop()
image_number = args.pop()
image_seed = args.pop()
sharpness = args.pop()
guidance_scale = args.pop()
base_model_name = args.pop()
refiner_model_name = args.pop()
refiner_switch = args.pop()
loras = [[str(args.pop()), float(args.pop())] for _ in range(5)]
input_image_checkbox = args.pop()
current_tab = args.pop()
uov_method = args.pop()
uov_input_image = args.pop()
outpaint_selections = args.pop()
inpaint_input_image = args.pop()
inpaint_additional_prompt = args.pop()
cn_tasks = {x: [] for x in flags.ip_list}
for _ in range(4):
cn_img = args.pop()
cn_stop = args.pop()
cn_weight = args.pop()
cn_type = args.pop()
if cn_img is not None:
cn_tasks[cn_type].append([cn_img, cn_stop, cn_weight])
outpaint_selections = [o.lower() for o in outpaint_selections]
base_model_additional_loras = []
raw_style_selections = copy.deepcopy(style_selections)
uov_method = uov_method.lower()
if fooocus_expansion in style_selections:
use_expansion = True
style_selections.remove(fooocus_expansion)
else:
use_expansion = False
use_style = len(style_selections) > 0
if base_model_name == refiner_model_name:
print(f'Refiner disabled because base model and refiner are same.')
refiner_model_name = 'None'
assert performance_selection in ['Speed', 'Quality', 'Extreme Speed']
steps = 30
if performance_selection == 'Speed':
steps = 30
if performance_selection == 'Quality':
steps = 60
if performance_selection == 'Extreme Speed':
print('Enter LCM mode.')
progressbar(async_task, 1, 'Downloading LCM components ...')
loras += [(modules.config.downloading_sdxl_lcm_lora(), 1.0)]
if refiner_model_name != 'None':
print(f'Refiner disabled in LCM mode.')
refiner_model_name = 'None'
sampler_name = advanced_parameters.sampler_name = 'lcm'
scheduler_name = advanced_parameters.scheduler_name = 'lcm'
modules.patch.sharpness = sharpness = 0.0
cfg_scale = guidance_scale = 1.0
modules.patch.adaptive_cfg = advanced_parameters.adaptive_cfg = 1.0
refiner_switch = 1.0
modules.patch.positive_adm_scale = advanced_parameters.adm_scaler_positive = 1.0
modules.patch.negative_adm_scale = advanced_parameters.adm_scaler_negative = 1.0
modules.patch.adm_scaler_end = advanced_parameters.adm_scaler_end = 0.0
steps = 8
modules.patch.adaptive_cfg = advanced_parameters.adaptive_cfg
print(f'[Parameters] Adaptive CFG = {modules.patch.adaptive_cfg}')
modules.patch.sharpness = sharpness
print(f'[Parameters] Sharpness = {modules.patch.sharpness}')
modules.patch.positive_adm_scale = advanced_parameters.adm_scaler_positive
modules.patch.negative_adm_scale = advanced_parameters.adm_scaler_negative
modules.patch.adm_scaler_end = advanced_parameters.adm_scaler_end
print(f'[Parameters] ADM Scale = '
f'{modules.patch.positive_adm_scale} : '
f'{modules.patch.negative_adm_scale} : '
f'{modules.patch.adm_scaler_end}')
cfg_scale = float(guidance_scale)
print(f'[Parameters] CFG = {cfg_scale}')
initial_latent = None
denoising_strength = 1.0
tiled = False
width, height = aspect_ratios_selection.replace('×', ' ').split(' ')[:2]
width, height = int(width), int(height)
skip_prompt_processing = False
refiner_swap_method = advanced_parameters.refiner_swap_method
inpaint_worker.current_task = None
inpaint_parameterized = advanced_parameters.inpaint_engine != 'None'
inpaint_image = None
inpaint_mask = None
inpaint_head_model_path = None
use_synthetic_refiner = False
controlnet_canny_path = None
controlnet_cpds_path = None
clip_vision_path, ip_negative_path, ip_adapter_path, ip_adapter_face_path = None, None, None, None
seed = int(image_seed)
print(f'[Parameters] Seed = {seed}')
sampler_name = advanced_parameters.sampler_name
scheduler_name = advanced_parameters.scheduler_name
goals = []
tasks = []
if input_image_checkbox:
if (current_tab == 'uov' or (
current_tab == 'ip' and advanced_parameters.mixing_image_prompt_and_vary_upscale)) \
and uov_method != flags.disabled and uov_input_image is not None:
uov_input_image = HWC3(uov_input_image)
if 'vary' in uov_method:
goals.append('vary')
elif 'upscale' in uov_method:
goals.append('upscale')
if 'fast' in uov_method:
skip_prompt_processing = True
else:
steps = 18
if performance_selection == 'Speed':
steps = 18
if performance_selection == 'Quality':
steps = 36
if performance_selection == 'Extreme Speed':
steps = 8
progressbar(async_task, 1, 'Downloading upscale models ...')
modules.config.downloading_upscale_model()
if (current_tab == 'inpaint' or (
current_tab == 'ip' and advanced_parameters.mixing_image_prompt_and_inpaint)) \
and isinstance(inpaint_input_image, dict):
inpaint_image = inpaint_input_image['image']
inpaint_mask = inpaint_input_image['mask'][:, :, 0]
inpaint_image = HWC3(inpaint_image)
if isinstance(inpaint_image, np.ndarray) and isinstance(inpaint_mask, np.ndarray) \
and (np.any(inpaint_mask > 127) or len(outpaint_selections) > 0):
progressbar(async_task, 1, 'Downloading upscale models ...')
modules.config.downloading_upscale_model()
if inpaint_parameterized:
progressbar(async_task, 1, 'Downloading inpainter ...')
inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models(
advanced_parameters.inpaint_engine)
base_model_additional_loras += [(inpaint_patch_model_path, 1.0)]
print(f'[Inpaint] Current inpaint model is {inpaint_patch_model_path}')
if refiner_model_name == 'None':
use_synthetic_refiner = True
refiner_switch = 0.5
else:
inpaint_head_model_path, inpaint_patch_model_path = None, None
print(f'[Inpaint] Parameterized inpaint is disabled.')
if inpaint_additional_prompt != '':
if prompt == '':
prompt = inpaint_additional_prompt
else:
prompt = inpaint_additional_prompt + '\n' + prompt
goals.append('inpaint')
if current_tab == 'ip' or \
advanced_parameters.mixing_image_prompt_and_inpaint or \
advanced_parameters.mixing_image_prompt_and_vary_upscale:
goals.append('cn')
progressbar(async_task, 1, 'Downloading control models ...')
if len(cn_tasks[flags.cn_canny]) > 0:
controlnet_canny_path = modules.config.downloading_controlnet_canny()
if len(cn_tasks[flags.cn_cpds]) > 0:
controlnet_cpds_path = modules.config.downloading_controlnet_cpds()
if len(cn_tasks[flags.cn_ip]) > 0:
clip_vision_path, ip_negative_path, ip_adapter_path = modules.config.downloading_ip_adapters('ip')
if len(cn_tasks[flags.cn_ip_face]) > 0:
clip_vision_path, ip_negative_path, ip_adapter_face_path = modules.config.downloading_ip_adapters(
'face')
progressbar(async_task, 1, 'Loading control models ...')
# Load or unload CNs
pipeline.refresh_controlnets([controlnet_canny_path, controlnet_cpds_path])
ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path)
ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_face_path)
switch = int(round(steps * refiner_switch))
if advanced_parameters.overwrite_step > 0:
steps = advanced_parameters.overwrite_step
if advanced_parameters.overwrite_switch > 0:
switch = advanced_parameters.overwrite_switch
if advanced_parameters.overwrite_width > 0:
width = advanced_parameters.overwrite_width
if advanced_parameters.overwrite_height > 0:
height = advanced_parameters.overwrite_height
print(f'[Parameters] Sampler = {sampler_name} - {scheduler_name}')
print(f'[Parameters] Steps = {steps} - {switch}')
progressbar(async_task, 1, 'Initializing ...')
if not skip_prompt_processing:
prompts = remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='')
negative_prompts = remove_empty_str([safe_str(p) for p in negative_prompt.splitlines()], default='')
prompt = prompts[0]
negative_prompt = negative_prompts[0]
if prompt == '':
# disable expansion when empty since it is not meaningful and influences image prompt
use_expansion = False
extra_positive_prompts = prompts[1:] if len(prompts) > 1 else []
extra_negative_prompts = negative_prompts[1:] if len(negative_prompts) > 1 else []
progressbar(async_task, 3, 'Loading models ...')
pipeline.refresh_everything(refiner_model_name=refiner_model_name, base_model_name=base_model_name,
loras=loras, base_model_additional_loras=base_model_additional_loras,
use_synthetic_refiner=use_synthetic_refiner)
progressbar(async_task, 3, 'Processing prompts ...')
tasks = []
for i in range(image_number):
task_seed = (seed + i) % (constants.MAX_SEED + 1) # randint is inclusive, % is not
task_rng = random.Random(task_seed) # may bind to inpaint noise in the future
task_prompt = apply_wildcards(prompt, task_rng)
task_negative_prompt = apply_wildcards(negative_prompt, task_rng)
task_extra_positive_prompts = [apply_wildcards(pmt, task_rng) for pmt in extra_positive_prompts]
task_extra_negative_prompts = [apply_wildcards(pmt, task_rng) for pmt in extra_negative_prompts]
positive_basic_workloads = []
negative_basic_workloads = []
if use_style:
for s in style_selections:
p, n = apply_style(s, positive=task_prompt)
positive_basic_workloads = positive_basic_workloads + p
negative_basic_workloads = negative_basic_workloads + n
else:
positive_basic_workloads.append(task_prompt)
negative_basic_workloads.append(task_negative_prompt) # Always use independent workload for negative.
positive_basic_workloads = positive_basic_workloads + task_extra_positive_prompts
negative_basic_workloads = negative_basic_workloads + task_extra_negative_prompts
positive_basic_workloads = remove_empty_str(positive_basic_workloads, default=task_prompt)
negative_basic_workloads = remove_empty_str(negative_basic_workloads, default=task_negative_prompt)
tasks.append(dict(
task_seed=task_seed,
task_prompt=task_prompt,
task_negative_prompt=task_negative_prompt,
positive=positive_basic_workloads,
negative=negative_basic_workloads,
expansion='',
c=None,
uc=None,
positive_top_k=len(positive_basic_workloads),
negative_top_k=len(negative_basic_workloads),
log_positive_prompt='\n'.join([task_prompt] + task_extra_positive_prompts),
log_negative_prompt='\n'.join([task_negative_prompt] + task_extra_negative_prompts),
))
if use_expansion:
for i, t in enumerate(tasks):
progressbar(async_task, 5, f'Preparing Fooocus text #{i + 1} ...')
expansion = pipeline.final_expansion(t['task_prompt'], t['task_seed'])
print(f'[Prompt Expansion] {expansion}')
t['expansion'] = expansion
t['positive'] = copy.deepcopy(t['positive']) + [expansion] # Deep copy.
for i, t in enumerate(tasks):
progressbar(async_task, 7, f'Encoding positive #{i + 1} ...')
t['c'] = pipeline.clip_encode(texts=t['positive'], pool_top_k=t['positive_top_k'])
for i, t in enumerate(tasks):
if abs(float(cfg_scale) - 1.0) < 1e-4:
t['uc'] = pipeline.clone_cond(t['c'])
else:
progressbar(async_task, 10, f'Encoding negative #{i + 1} ...')
t['uc'] = pipeline.clip_encode(texts=t['negative'], pool_top_k=t['negative_top_k'])
if len(goals) > 0:
progressbar(async_task, 13, 'Image processing ...')
if 'vary' in goals:
if 'subtle' in uov_method:
denoising_strength = 0.5
if 'strong' in uov_method:
denoising_strength = 0.85
if advanced_parameters.overwrite_vary_strength > 0:
denoising_strength = advanced_parameters.overwrite_vary_strength
shape_ceil = get_image_shape_ceil(uov_input_image)
if shape_ceil < 1024:
print(f'[Vary] Image is resized because it is too small.')
shape_ceil = 1024
elif shape_ceil > 2048:
print(f'[Vary] Image is resized because it is too big.')
shape_ceil = 2048
uov_input_image = set_image_shape_ceil(uov_input_image, shape_ceil)
initial_pixels = core.numpy_to_pytorch(uov_input_image)
progressbar(async_task, 13, 'VAE encoding ...')
candidate_vae, _ = pipeline.get_candidate_vae(
steps=steps,
switch=switch,
denoise=denoising_strength,
refiner_swap_method=refiner_swap_method
)
initial_latent = core.encode_vae(vae=candidate_vae, pixels=initial_pixels)
B, C, H, W = initial_latent['samples'].shape
width = W * 8
height = H * 8
print(f'Final resolution is {str((height, width))}.')
if 'upscale' in goals:
H, W, C = uov_input_image.shape
progressbar(async_task, 13, f'Upscaling image from {str((H, W))} ...')
uov_input_image = perform_upscale(uov_input_image)
print(f'Image upscaled.')
if '1.5x' in uov_method:
f = 1.5
elif '2x' in uov_method:
f = 2.0
else:
f = 1.0
shape_ceil = get_shape_ceil(H * f, W * f)
if shape_ceil < 1024:
print(f'[Upscale] Image is resized because it is too small.')
uov_input_image = set_image_shape_ceil(uov_input_image, 1024)
shape_ceil = 1024
else:
uov_input_image = resample_image(uov_input_image, width=W * f, height=H * f)
image_is_super_large = shape_ceil > 2800
if 'fast' in uov_method:
direct_return = True
elif image_is_super_large:
print('Image is too large. Directly returned the SR image. '
'Usually directly return SR image at 4K resolution '
'yields better results than SDXL diffusion.')
direct_return = True
else:
direct_return = False
if direct_return:
d = [('Upscale (Fast)', '2x')]
log(uov_input_image, d)
yield_result(async_task, uov_input_image, do_not_show_finished_images=True)
return
tiled = True
denoising_strength = 0.382
if advanced_parameters.overwrite_upscale_strength > 0:
denoising_strength = advanced_parameters.overwrite_upscale_strength
initial_pixels = core.numpy_to_pytorch(uov_input_image)
progressbar(async_task, 13, 'VAE encoding ...')
candidate_vae, _ = pipeline.get_candidate_vae(
steps=steps,
switch=switch,
denoise=denoising_strength,
refiner_swap_method=refiner_swap_method
)
initial_latent = core.encode_vae(
vae=candidate_vae,
pixels=initial_pixels, tiled=True)
B, C, H, W = initial_latent['samples'].shape
width = W * 8
height = H * 8
print(f'Final resolution is {str((height, width))}.')
if 'inpaint' in goals:
if len(outpaint_selections) > 0:
H, W, C = inpaint_image.shape
if 'top' in outpaint_selections:
inpaint_image = np.pad(inpaint_image, [[int(H * 0.3), 0], [0, 0], [0, 0]], mode='edge')
inpaint_mask = np.pad(inpaint_mask, [[int(H * 0.3), 0], [0, 0]], mode='constant',
constant_values=255)
if 'bottom' in outpaint_selections:
inpaint_image = np.pad(inpaint_image, [[0, int(H * 0.3)], [0, 0], [0, 0]], mode='edge')
inpaint_mask = np.pad(inpaint_mask, [[0, int(H * 0.3)], [0, 0]], mode='constant',
constant_values=255)
H, W, C = inpaint_image.shape
if 'left' in outpaint_selections:
inpaint_image = np.pad(inpaint_image, [[0, 0], [int(H * 0.3), 0], [0, 0]], mode='edge')
inpaint_mask = np.pad(inpaint_mask, [[0, 0], [int(H * 0.3), 0]], mode='constant',
constant_values=255)
if 'right' in outpaint_selections:
inpaint_image = np.pad(inpaint_image, [[0, 0], [0, int(H * 0.3)], [0, 0]], mode='edge')
inpaint_mask = np.pad(inpaint_mask, [[0, 0], [0, int(H * 0.3)]], mode='constant',
constant_values=255)
inpaint_image = np.ascontiguousarray(inpaint_image.copy())
inpaint_mask = np.ascontiguousarray(inpaint_mask.copy())
advanced_parameters.inpaint_strength = 1.0
advanced_parameters.inpaint_respective_field = 1.0
denoising_strength = advanced_parameters.inpaint_strength
inpaint_worker.current_task = inpaint_worker.InpaintWorker(
image=inpaint_image,
mask=inpaint_mask,
use_fill=denoising_strength > 0.99,
k=advanced_parameters.inpaint_respective_field
)
if advanced_parameters.debugging_inpaint_preprocessor:
yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(),
do_not_show_finished_images=True)
return
progressbar(async_task, 13, 'VAE Inpaint encoding ...')
inpaint_pixel_fill = core.numpy_to_pytorch(inpaint_worker.current_task.interested_fill)
inpaint_pixel_image = core.numpy_to_pytorch(inpaint_worker.current_task.interested_image)
inpaint_pixel_mask = core.numpy_to_pytorch(inpaint_worker.current_task.interested_mask)
candidate_vae, candidate_vae_swap = pipeline.get_candidate_vae(
steps=steps,
switch=switch,
denoise=denoising_strength,
refiner_swap_method=refiner_swap_method
)
latent_inpaint, latent_mask = core.encode_vae_inpaint(
mask=inpaint_pixel_mask,
vae=candidate_vae,
pixels=inpaint_pixel_image)
latent_swap = None
if candidate_vae_swap is not None:
progressbar(async_task, 13, 'VAE SD15 encoding ...')
latent_swap = core.encode_vae(
vae=candidate_vae_swap,
pixels=inpaint_pixel_fill)['samples']
progressbar(async_task, 13, 'VAE encoding ...')
latent_fill = core.encode_vae(
vae=candidate_vae,
pixels=inpaint_pixel_fill)['samples']
inpaint_worker.current_task.load_latent(
latent_fill=latent_fill, latent_mask=latent_mask, latent_swap=latent_swap)
if inpaint_parameterized:
pipeline.final_unet = inpaint_worker.current_task.patch(
inpaint_head_model_path=inpaint_head_model_path,
inpaint_latent=latent_inpaint,
inpaint_latent_mask=latent_mask,
model=pipeline.final_unet
)
if not advanced_parameters.inpaint_disable_initial_latent:
initial_latent = {'samples': latent_fill}
B, C, H, W = latent_fill.shape
height, width = H * 8, W * 8
final_height, final_width = inpaint_worker.current_task.image.shape[:2]
print(f'Final resolution is {str((final_height, final_width))}, latent is {str((height, width))}.')
if 'cn' in goals:
for task in cn_tasks[flags.cn_canny]:
cn_img, cn_stop, cn_weight = task
cn_img = resize_image(HWC3(cn_img), width=width, height=height)
if not advanced_parameters.skipping_cn_preprocessor:
cn_img = preprocessors.canny_pyramid(cn_img)
cn_img = HWC3(cn_img)
task[0] = core.numpy_to_pytorch(cn_img)
if advanced_parameters.debugging_cn_preprocessor:
yield_result(async_task, cn_img, do_not_show_finished_images=True)
return
for task in cn_tasks[flags.cn_cpds]:
cn_img, cn_stop, cn_weight = task
cn_img = resize_image(HWC3(cn_img), width=width, height=height)
if not advanced_parameters.skipping_cn_preprocessor:
cn_img = preprocessors.cpds(cn_img)
cn_img = HWC3(cn_img)
task[0] = core.numpy_to_pytorch(cn_img)
if advanced_parameters.debugging_cn_preprocessor:
yield_result(async_task, cn_img, do_not_show_finished_images=True)
return
for task in cn_tasks[flags.cn_ip]:
cn_img, cn_stop, cn_weight = task
cn_img = HWC3(cn_img)
# https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75
cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0)
task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_path)
if advanced_parameters.debugging_cn_preprocessor:
yield_result(async_task, cn_img, do_not_show_finished_images=True)
return
for task in cn_tasks[flags.cn_ip_face]:
cn_img, cn_stop, cn_weight = task
cn_img = HWC3(cn_img)
if not advanced_parameters.skipping_cn_preprocessor:
cn_img = extras.face_crop.crop_image(cn_img)
# https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75
cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0)
task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_face_path)
if advanced_parameters.debugging_cn_preprocessor:
yield_result(async_task, cn_img, do_not_show_finished_images=True)
return
all_ip_tasks = cn_tasks[flags.cn_ip] + cn_tasks[flags.cn_ip_face]
if len(all_ip_tasks) > 0:
pipeline.final_unet = ip_adapter.patch_model(pipeline.final_unet, all_ip_tasks)
if advanced_parameters.freeu_enabled:
print(f'FreeU is enabled!')
pipeline.final_unet = core.apply_freeu(
pipeline.final_unet,
advanced_parameters.freeu_b1,
advanced_parameters.freeu_b2,
advanced_parameters.freeu_s1,
advanced_parameters.freeu_s2
)
all_steps = steps * image_number
print(f'[Parameters] Denoising Strength = {denoising_strength}')
if isinstance(initial_latent, dict) and 'samples' in initial_latent:
log_shape = initial_latent['samples'].shape
else:
log_shape = f'Image Space {(height, width)}'
print(f'[Parameters] Initial Latent shape: {log_shape}')
preparation_time = time.perf_counter() - execution_start_time
print(f'Preparation time: {preparation_time:.2f} seconds')
final_sampler_name = sampler_name
final_scheduler_name = scheduler_name
if scheduler_name == 'lcm':
final_scheduler_name = 'sgm_uniform'
if pipeline.final_unet is not None:
pipeline.final_unet = core.opModelSamplingDiscrete.patch(
pipeline.final_unet,
sampling='lcm',
zsnr=False)[0]
if pipeline.final_refiner_unet is not None:
pipeline.final_refiner_unet = core.opModelSamplingDiscrete.patch(
pipeline.final_refiner_unet,
sampling='lcm',
zsnr=False)[0]
print('Using lcm scheduler.')
async_task.yields.append(['preview', (13, 'Moving model to GPU ...', None)])
def callback(step, x0, x, total_steps, y):
done_steps = current_task_id * steps + step
async_task.yields.append(['preview', (
int(15.0 + 85.0 * float(done_steps) / float(all_steps)),
f'Step {step}/{total_steps} in the {current_task_id + 1}-th Sampling',
y)])
for current_task_id, task in enumerate(tasks):
execution_start_time = time.perf_counter()
try:
positive_cond, negative_cond = task['c'], task['uc']
if 'cn' in goals:
for cn_flag, cn_path in [
(flags.cn_canny, controlnet_canny_path),
(flags.cn_cpds, controlnet_cpds_path)
]:
for cn_img, cn_stop, cn_weight in cn_tasks[cn_flag]:
positive_cond, negative_cond = core.apply_controlnet(
positive_cond, negative_cond,
pipeline.loaded_ControlNets[cn_path], cn_img, cn_weight, 0, cn_stop)
imgs = pipeline.process_diffusion(
positive_cond=positive_cond,
negative_cond=negative_cond,
steps=steps,
switch=switch,
width=width,
height=height,
image_seed=task['task_seed'],
callback=callback,
sampler_name=final_sampler_name,
scheduler_name=final_scheduler_name,
latent=initial_latent,
denoise=denoising_strength,
tiled=tiled,
cfg_scale=cfg_scale,
refiner_swap_method=refiner_swap_method
)
del task['c'], task['uc'], positive_cond, negative_cond # Save memory
if inpaint_worker.current_task is not None:
imgs = [inpaint_worker.current_task.post_process(x) for x in imgs]
for x in imgs:
d = [
('Prompt', task['log_positive_prompt']),
('Negative Prompt', task['log_negative_prompt']),
('Fooocus V2 Expansion', task['expansion']),
('Styles', str(raw_style_selections)),
('Performance', performance_selection),
('Resolution', str((width, height))),
('Sharpness', sharpness),
('Guidance Scale', guidance_scale),
('ADM Guidance', str((
modules.patch.positive_adm_scale,
modules.patch.negative_adm_scale,
modules.patch.adm_scaler_end))),
('Base Model', base_model_name),
('Refiner Model', refiner_model_name),
('Refiner Switch', refiner_switch),
('Sampler', sampler_name),
('Scheduler', scheduler_name),
('Seed', task['task_seed']),
]
for li, (n, w) in enumerate(loras):
if n != 'None':
d.append((f'LoRA {li + 1}', f'{n} : {w}'))
d.append(('Version', 'v' + fooocus_version.version))
log(x, d)
yield_result(async_task, imgs, do_not_show_finished_images=len(tasks) == 1)
except ldm_patched.modules.model_management.InterruptProcessingException as e:
if shared.last_stop == 'skip':
print('User skipped')
continue
else:
print('User stopped')
break
execution_time = time.perf_counter() - execution_start_time
print(f'Generating and saving time: {execution_time:.2f} seconds')
return
while True:
time.sleep(0.01)
if len(async_tasks) > 0:
task = async_tasks.pop(0)
try:
handler(task)
build_image_wall(task)
task.yields.append(['finish', task.results])
pipeline.prepare_text_encoder(async_call=True)
except:
traceback.print_exc()
task.yields.append(['finish', task.results])
pass
threading.Thread(target=worker, daemon=True).start()
|