File size: 16,048 Bytes
1086a9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
import modules.core as core
import os
import torch
import modules.patch
import modules.config
import ldm_patched.modules.model_management
import ldm_patched.modules.latent_formats
import modules.inpaint_worker
import extras.vae_interpose as vae_interpose
from extras.expansion import FooocusExpansion

from ldm_patched.modules.model_base import SDXL, SDXLRefiner
from modules.sample_hijack import clip_separate


model_base = core.StableDiffusionModel()
model_refiner = core.StableDiffusionModel()

final_expansion = None
final_unet = None
final_clip = None
final_vae = None
final_refiner_unet = None
final_refiner_vae = None

loaded_ControlNets = {}


@torch.no_grad()
@torch.inference_mode()
def refresh_controlnets(model_paths):
    global loaded_ControlNets
    cache = {}
    for p in model_paths:
        if p is not None:
            if p in loaded_ControlNets:
                cache[p] = loaded_ControlNets[p]
            else:
                cache[p] = core.load_controlnet(p)
    loaded_ControlNets = cache
    return


@torch.no_grad()
@torch.inference_mode()
def assert_model_integrity():
    error_message = None

    if not isinstance(model_base.unet_with_lora.model, SDXL):
        error_message = 'You have selected base model other than SDXL. This is not supported yet.'

    if error_message is not None:
        raise NotImplementedError(error_message)

    return True


@torch.no_grad()
@torch.inference_mode()
def refresh_base_model(name):
    global model_base

    filename = os.path.abspath(os.path.realpath(os.path.join(modules.config.path_checkpoints, name)))

    if model_base.filename == filename:
        return

    model_base = core.StableDiffusionModel()
    model_base = core.load_model(filename)
    print(f'Base model loaded: {model_base.filename}')
    return


@torch.no_grad()
@torch.inference_mode()
def refresh_refiner_model(name):
    global model_refiner

    filename = os.path.abspath(os.path.realpath(os.path.join(modules.config.path_checkpoints, name)))

    if model_refiner.filename == filename:
        return

    model_refiner = core.StableDiffusionModel()

    if name == 'None':
        print(f'Refiner unloaded.')
        return

    model_refiner = core.load_model(filename)
    print(f'Refiner model loaded: {model_refiner.filename}')

    if isinstance(model_refiner.unet.model, SDXL):
        model_refiner.clip = None
        model_refiner.vae = None
    elif isinstance(model_refiner.unet.model, SDXLRefiner):
        model_refiner.clip = None
        model_refiner.vae = None
    else:
        model_refiner.clip = None

    return


@torch.no_grad()
@torch.inference_mode()
def synthesize_refiner_model():
    global model_base, model_refiner

    print('Synthetic Refiner Activated')
    model_refiner = core.StableDiffusionModel(
        unet=model_base.unet,
        vae=model_base.vae,
        clip=model_base.clip,
        clip_vision=model_base.clip_vision,
        filename=model_base.filename
    )
    model_refiner.vae = None
    model_refiner.clip = None
    model_refiner.clip_vision = None

    return


@torch.no_grad()
@torch.inference_mode()
def refresh_loras(loras, base_model_additional_loras=None):
    global model_base, model_refiner

    if not isinstance(base_model_additional_loras, list):
        base_model_additional_loras = []

    model_base.refresh_loras(loras + base_model_additional_loras)
    model_refiner.refresh_loras(loras)

    return


@torch.no_grad()
@torch.inference_mode()
def clip_encode_single(clip, text, verbose=False):
    cached = clip.fcs_cond_cache.get(text, None)
    if cached is not None:
        if verbose:
            print(f'[CLIP Cached] {text}')
        return cached
    tokens = clip.tokenize(text)
    result = clip.encode_from_tokens(tokens, return_pooled=True)
    clip.fcs_cond_cache[text] = result
    if verbose:
        print(f'[CLIP Encoded] {text}')
    return result


@torch.no_grad()
@torch.inference_mode()
def clone_cond(conds):
    results = []

    for c, p in conds:
        p = p["pooled_output"]

        if isinstance(c, torch.Tensor):
            c = c.clone()

        if isinstance(p, torch.Tensor):
            p = p.clone()

        results.append([c, {"pooled_output": p}])

    return results


@torch.no_grad()
@torch.inference_mode()
def clip_encode(texts, pool_top_k=1):
    global final_clip

    if final_clip is None:
        return None
    if not isinstance(texts, list):
        return None
    if len(texts) == 0:
        return None

    cond_list = []
    pooled_acc = 0

    for i, text in enumerate(texts):
        cond, pooled = clip_encode_single(final_clip, text)
        cond_list.append(cond)
        if i < pool_top_k:
            pooled_acc += pooled

    return [[torch.cat(cond_list, dim=1), {"pooled_output": pooled_acc}]]


@torch.no_grad()
@torch.inference_mode()
def clear_all_caches():
    final_clip.fcs_cond_cache = {}


@torch.no_grad()
@torch.inference_mode()
def prepare_text_encoder(async_call=True):
    if async_call:
        # TODO: make sure that this is always called in an async way so that users cannot feel it.
        pass
    assert_model_integrity()
    ldm_patched.modules.model_management.load_models_gpu([final_clip.patcher, final_expansion.patcher])
    return


@torch.no_grad()
@torch.inference_mode()
def refresh_everything(refiner_model_name, base_model_name, loras,
                       base_model_additional_loras=None, use_synthetic_refiner=False):
    global final_unet, final_clip, final_vae, final_refiner_unet, final_refiner_vae, final_expansion

    final_unet = None
    final_clip = None
    final_vae = None
    final_refiner_unet = None
    final_refiner_vae = None

    if use_synthetic_refiner and refiner_model_name == 'None':
        print('Synthetic Refiner Activated')
        refresh_base_model(base_model_name)
        synthesize_refiner_model()
    else:
        refresh_refiner_model(refiner_model_name)
        refresh_base_model(base_model_name)

    refresh_loras(loras, base_model_additional_loras=base_model_additional_loras)
    assert_model_integrity()

    final_unet = model_base.unet_with_lora
    final_clip = model_base.clip_with_lora
    final_vae = model_base.vae

    final_refiner_unet = model_refiner.unet_with_lora
    final_refiner_vae = model_refiner.vae

    if final_expansion is None:
        final_expansion = FooocusExpansion()

    prepare_text_encoder(async_call=True)
    clear_all_caches()
    return


refresh_everything(
    refiner_model_name=modules.config.default_refiner_model_name,
    base_model_name=modules.config.default_base_model_name,
    loras=modules.config.default_loras
)


@torch.no_grad()
@torch.inference_mode()
def vae_parse(latent):
    if final_refiner_vae is None:
        return latent

    result = vae_interpose.parse(latent["samples"])
    return {'samples': result}


@torch.no_grad()
@torch.inference_mode()
def calculate_sigmas_all(sampler, model, scheduler, steps):
    from ldm_patched.modules.samplers import calculate_sigmas_scheduler

    discard_penultimate_sigma = False
    if sampler in ['dpm_2', 'dpm_2_ancestral']:
        steps += 1
        discard_penultimate_sigma = True

    sigmas = calculate_sigmas_scheduler(model, scheduler, steps)

    if discard_penultimate_sigma:
        sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
    return sigmas


@torch.no_grad()
@torch.inference_mode()
def calculate_sigmas(sampler, model, scheduler, steps, denoise):
    if denoise is None or denoise > 0.9999:
        sigmas = calculate_sigmas_all(sampler, model, scheduler, steps)
    else:
        new_steps = int(steps / denoise)
        sigmas = calculate_sigmas_all(sampler, model, scheduler, new_steps)
        sigmas = sigmas[-(steps + 1):]
    return sigmas


@torch.no_grad()
@torch.inference_mode()
def get_candidate_vae(steps, switch, denoise=1.0, refiner_swap_method='joint'):
    assert refiner_swap_method in ['joint', 'separate', 'vae']

    if final_refiner_vae is not None and final_refiner_unet is not None:
        if denoise > 0.9:
            return final_vae, final_refiner_vae
        else:
            if denoise > (float(steps - switch) / float(steps)) ** 0.834:  # karras 0.834
                return final_vae, None
            else:
                return final_refiner_vae, None

    return final_vae, final_refiner_vae


@torch.no_grad()
@torch.inference_mode()
def process_diffusion(positive_cond, negative_cond, steps, switch, width, height, image_seed, callback, sampler_name, scheduler_name, latent=None, denoise=1.0, tiled=False, cfg_scale=7.0, refiner_swap_method='joint'):
    target_unet, target_vae, target_refiner_unet, target_refiner_vae, target_clip \
        = final_unet, final_vae, final_refiner_unet, final_refiner_vae, final_clip

    assert refiner_swap_method in ['joint', 'separate', 'vae']

    if final_refiner_vae is not None and final_refiner_unet is not None:
        # Refiner Use Different VAE (then it is SD15)
        if denoise > 0.9:
            refiner_swap_method = 'vae'
        else:
            refiner_swap_method = 'joint'
            if denoise > (float(steps - switch) / float(steps)) ** 0.834:  # karras 0.834
                target_unet, target_vae, target_refiner_unet, target_refiner_vae \
                    = final_unet, final_vae, None, None
                print(f'[Sampler] only use Base because of partial denoise.')
            else:
                positive_cond = clip_separate(positive_cond, target_model=final_refiner_unet.model, target_clip=final_clip)
                negative_cond = clip_separate(negative_cond, target_model=final_refiner_unet.model, target_clip=final_clip)
                target_unet, target_vae, target_refiner_unet, target_refiner_vae \
                    = final_refiner_unet, final_refiner_vae, None, None
                print(f'[Sampler] only use Refiner because of partial denoise.')

    print(f'[Sampler] refiner_swap_method = {refiner_swap_method}')

    if latent is None:
        initial_latent = core.generate_empty_latent(width=width, height=height, batch_size=1)
    else:
        initial_latent = latent

    minmax_sigmas = calculate_sigmas(sampler=sampler_name, scheduler=scheduler_name, model=final_unet.model, steps=steps, denoise=denoise)
    sigma_min, sigma_max = minmax_sigmas[minmax_sigmas > 0].min(), minmax_sigmas.max()
    sigma_min = float(sigma_min.cpu().numpy())
    sigma_max = float(sigma_max.cpu().numpy())
    print(f'[Sampler] sigma_min = {sigma_min}, sigma_max = {sigma_max}')

    modules.patch.BrownianTreeNoiseSamplerPatched.global_init(
        initial_latent['samples'].to(ldm_patched.modules.model_management.get_torch_device()),
        sigma_min, sigma_max, seed=image_seed, cpu=False)

    decoded_latent = None

    if refiner_swap_method == 'joint':
        sampled_latent = core.ksampler(
            model=target_unet,
            refiner=target_refiner_unet,
            positive=positive_cond,
            negative=negative_cond,
            latent=initial_latent,
            steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True,
            seed=image_seed,
            denoise=denoise,
            callback_function=callback,
            cfg=cfg_scale,
            sampler_name=sampler_name,
            scheduler=scheduler_name,
            refiner_switch=switch,
            previewer_start=0,
            previewer_end=steps,
        )
        decoded_latent = core.decode_vae(vae=target_vae, latent_image=sampled_latent, tiled=tiled)

    if refiner_swap_method == 'separate':
        sampled_latent = core.ksampler(
            model=target_unet,
            positive=positive_cond,
            negative=negative_cond,
            latent=initial_latent,
            steps=steps, start_step=0, last_step=switch, disable_noise=False, force_full_denoise=False,
            seed=image_seed,
            denoise=denoise,
            callback_function=callback,
            cfg=cfg_scale,
            sampler_name=sampler_name,
            scheduler=scheduler_name,
            previewer_start=0,
            previewer_end=steps,
        )
        print('Refiner swapped by changing ksampler. Noise preserved.')

        target_model = target_refiner_unet
        if target_model is None:
            target_model = target_unet
            print('Use base model to refine itself - this may because of developer mode.')

        sampled_latent = core.ksampler(
            model=target_model,
            positive=clip_separate(positive_cond, target_model=target_model.model, target_clip=target_clip),
            negative=clip_separate(negative_cond, target_model=target_model.model, target_clip=target_clip),
            latent=sampled_latent,
            steps=steps, start_step=switch, last_step=steps, disable_noise=True, force_full_denoise=True,
            seed=image_seed,
            denoise=denoise,
            callback_function=callback,
            cfg=cfg_scale,
            sampler_name=sampler_name,
            scheduler=scheduler_name,
            previewer_start=switch,
            previewer_end=steps,
        )

        target_model = target_refiner_vae
        if target_model is None:
            target_model = target_vae
        decoded_latent = core.decode_vae(vae=target_model, latent_image=sampled_latent, tiled=tiled)

    if refiner_swap_method == 'vae':
        modules.patch.eps_record = 'vae'

        if modules.inpaint_worker.current_task is not None:
            modules.inpaint_worker.current_task.unswap()

        sampled_latent = core.ksampler(
            model=target_unet,
            positive=positive_cond,
            negative=negative_cond,
            latent=initial_latent,
            steps=steps, start_step=0, last_step=switch, disable_noise=False, force_full_denoise=True,
            seed=image_seed,
            denoise=denoise,
            callback_function=callback,
            cfg=cfg_scale,
            sampler_name=sampler_name,
            scheduler=scheduler_name,
            previewer_start=0,
            previewer_end=steps
        )
        print('Fooocus VAE-based swap.')

        target_model = target_refiner_unet
        if target_model is None:
            target_model = target_unet
            print('Use base model to refine itself - this may because of developer mode.')

        sampled_latent = vae_parse(sampled_latent)

        k_sigmas = 1.4
        sigmas = calculate_sigmas(sampler=sampler_name,
                                  scheduler=scheduler_name,
                                  model=target_model.model,
                                  steps=steps,
                                  denoise=denoise)[switch:] * k_sigmas
        len_sigmas = len(sigmas) - 1

        noise_mean = torch.mean(modules.patch.eps_record, dim=1, keepdim=True)

        if modules.inpaint_worker.current_task is not None:
            modules.inpaint_worker.current_task.swap()

        sampled_latent = core.ksampler(
            model=target_model,
            positive=clip_separate(positive_cond, target_model=target_model.model, target_clip=target_clip),
            negative=clip_separate(negative_cond, target_model=target_model.model, target_clip=target_clip),
            latent=sampled_latent,
            steps=len_sigmas, start_step=0, last_step=len_sigmas, disable_noise=False, force_full_denoise=True,
            seed=image_seed+1,
            denoise=denoise,
            callback_function=callback,
            cfg=cfg_scale,
            sampler_name=sampler_name,
            scheduler=scheduler_name,
            previewer_start=switch,
            previewer_end=steps,
            sigmas=sigmas,
            noise_mean=noise_mean
        )

        target_model = target_refiner_vae
        if target_model is None:
            target_model = target_vae
        decoded_latent = core.decode_vae(vae=target_model, latent_image=sampled_latent, tiled=tiled)

    images = core.pytorch_to_numpy(decoded_latent)
    modules.patch.eps_record = None
    return images