File size: 3,785 Bytes
1086a9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import json
import gradio as gr
import modules.config


def load_parameter_button_click(raw_prompt_txt):
    loaded_parameter_dict = json.loads(raw_prompt_txt)
    assert isinstance(loaded_parameter_dict, dict)

    results = [True, 1]

    try:
        h = loaded_parameter_dict.get('Prompt', None)
        assert isinstance(h, str)
        results.append(h)
    except:
        results.append(gr.update())

    try:
        h = loaded_parameter_dict.get('Negative Prompt', None)
        assert isinstance(h, str)
        results.append(h)
    except:
        results.append(gr.update())

    try:
        h = loaded_parameter_dict.get('Styles', None)
        h = eval(h)
        assert isinstance(h, list)
        results.append(h)
    except:
        results.append(gr.update())

    try:
        h = loaded_parameter_dict.get('Performance', None)
        assert isinstance(h, str)
        results.append(h)
    except:
        results.append(gr.update())

    try:
        h = loaded_parameter_dict.get('Resolution', None)
        width, height = eval(h)
        formatted = modules.config.add_ratio(f'{width}*{height}')
        if formatted in modules.config.available_aspect_ratios:
            results.append(formatted)
            results.append(-1)
            results.append(-1)
        else:
            results.append(gr.update())
            results.append(width)
            results.append(height)
    except:
        results.append(gr.update())
        results.append(gr.update())
        results.append(gr.update())

    try:
        h = loaded_parameter_dict.get('Sharpness', None)
        assert h is not None
        h = float(h)
        results.append(h)
    except:
        results.append(gr.update())

    try:
        h = loaded_parameter_dict.get('Guidance Scale', None)
        assert h is not None
        h = float(h)
        results.append(h)
    except:
        results.append(gr.update())

    try:
        h = loaded_parameter_dict.get('ADM Guidance', None)
        p, n, e = eval(h)
        results.append(float(p))
        results.append(float(n))
        results.append(float(e))
    except:
        results.append(gr.update())
        results.append(gr.update())
        results.append(gr.update())

    try:
        h = loaded_parameter_dict.get('Base Model', None)
        assert isinstance(h, str)
        results.append(h)
    except:
        results.append(gr.update())

    try:
        h = loaded_parameter_dict.get('Refiner Model', None)
        assert isinstance(h, str)
        results.append(h)
    except:
        results.append(gr.update())

    try:
        h = loaded_parameter_dict.get('Refiner Switch', None)
        assert h is not None
        h = float(h)
        results.append(h)
    except:
        results.append(gr.update())

    try:
        h = loaded_parameter_dict.get('Sampler', None)
        assert isinstance(h, str)
        results.append(h)
    except:
        results.append(gr.update())

    try:
        h = loaded_parameter_dict.get('Scheduler', None)
        assert isinstance(h, str)
        results.append(h)
    except:
        results.append(gr.update())

    try:
        h = loaded_parameter_dict.get('Seed', None)
        assert h is not None
        h = int(h)
        results.append(False)
        results.append(h)
    except:
        results.append(gr.update())
        results.append(gr.update())

    results.append(gr.update(visible=True))
    results.append(gr.update(visible=False))

    for i in range(1, 6):
        try:
            n, w = loaded_parameter_dict.get(f'LoRA {i}').split(' : ')
            w = float(w)
            results.append(n)
            results.append(w)
        except:
            results.append(gr.update())
            results.append(gr.update())

    return results