foooocus4 / modules /patch_precision.py
awqwqwq's picture
Upload folder using huggingface_hub
1086a9c
raw
history blame
2.2 kB
# Consistent with Kohya to reduce differences between model training and inference.
import torch
import math
import einops
import numpy as np
import ldm_patched.ldm.modules.diffusionmodules.openaimodel
import ldm_patched.modules.model_sampling
import ldm_patched.modules.sd1_clip
from ldm_patched.ldm.modules.diffusionmodules.util import make_beta_schedule
def patched_timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
# Consistent with Kohya to reduce differences between model training and inference.
if not repeat_only:
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=timesteps.device)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
else:
embedding = einops.repeat(timesteps, 'b -> b d', d=dim)
return embedding
def patched_register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
# Consistent with Kohya to reduce differences between model training and inference.
if given_betas is not None:
betas = given_betas
else:
betas = make_beta_schedule(
beta_schedule,
timesteps,
linear_start=linear_start,
linear_end=linear_end,
cosine_s=cosine_s)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
sigmas = torch.tensor(((1 - alphas_cumprod) / alphas_cumprod) ** 0.5, dtype=torch.float32)
self.set_sigmas(sigmas)
return
def patch_all_precision():
ldm_patched.ldm.modules.diffusionmodules.openaimodel.timestep_embedding = patched_timestep_embedding
ldm_patched.modules.model_sampling.ModelSamplingDiscrete._register_schedule = patched_register_schedule
return