import pathlib from faster_whisper import WhisperModel import yt_dlp import uuid import os import gradio as gr # List of all supported video sites here https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md def download_convert_video_to_audio( yt_dlp, video_url: str, destination_path: pathlib.Path, ) -> None: ydl_opts = { "format": "bestaudio/best", "postprocessors": [ { # Extract audio using ffmpeg "key": "FFmpegExtractAudio", "preferredcodec": "mp3", } ], "outtmpl": f"{destination_path}.%(ext)s", } try: print(f"Downloading video from {video_url}") with yt_dlp.YoutubeDL(ydl_opts) as ydl: ydl.download(video_url) print(f"Downloaded video from {video_url} to {destination_path}") except Exception as e: raise (e) def segment_to_dict(segment): segment = segment._asdict() if segment["words"] is not None: segment["words"] = [word._asdict() for word in segment["words"]] return segment def download_video(video_url: str): download_convert_video_to_audio(yt_dlp, video_url, f"/content/{uuid.uuid4().hex}") def transcribe_video(video_url: str, beam_size: int = 5, model_size: str = "tiny", word_timestamps: bool = True): print("loading model") model = WhisperModel(model_size, device="cpu", compute_type="int8") print("getting hex") rand_id = uuid.uuid4().hex print("doing download") download_convert_video_to_audio(yt_dlp, video_url, f"/content/{rand_id}") segments, info = model.transcribe(f"/content/{rand_id}.mp3", beam_size=beam_size, word_timestamps=word_timestamps) segments = [segment_to_dict(segment) for segment in segments] total_duration = round(info.duration, 2) # Same precision as the Whisper timestamps. print(info) os.remove(f"/content/{rand_id}.mp3") print("Detected language '%s' with probability %f" % (info.language, info.language_probability)) print(segments) return segments # print("Detected language '%s' with probability %f" % (info.language, info.language_probability)) # for segment in segments: # print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) demo = gr.Interface(fn=transcribe_video, inputs="text", outputs="text") demo.launch()