|
|
|
from transformers import AutoFeatureExtractor, AutoModelForImageClassification |
|
import torch |
|
import gradio as gr |
|
|
|
extractor = AutoFeatureExtractor.from_pretrained("ayoubkirouane/VIT_Beans_Leaf_Disease_Classifier") |
|
model = AutoModelForImageClassification.from_pretrained("ayoubkirouane/VIT_Beans_Leaf_Disease_Classifier") |
|
|
|
labels = ['angular_leaf_spot', 'bean_rust', 'healthy'] |
|
|
|
def classify(im): |
|
features = extractor(im, return_tensors='pt') |
|
logits = model(features["pixel_values"])[-1] |
|
probability = torch.nn.functional.softmax(logits, dim=-1) |
|
probs = probability[0].detach().numpy() |
|
confidences = {label: float(probs[i]) for i, label in enumerate(labels)} |
|
return confidences |
|
|
|
interface = gr.Interface( |
|
classify, |
|
inputs='image', |
|
outputs='label', |
|
) |
|
|
|
interface.launch(share=True , debug=True) |
|
|
|
|