# Load model directly from transformers import AutoFeatureExtractor, AutoModelForImageClassification import torch import gradio as gr extractor = AutoFeatureExtractor.from_pretrained("ayoubkirouane/VIT_Beans_Leaf_Disease_Classifier") model = AutoModelForImageClassification.from_pretrained("ayoubkirouane/VIT_Beans_Leaf_Disease_Classifier") labels = ['angular_leaf_spot', 'bean_rust', 'healthy'] def classify(im): features = extractor(im, return_tensors='pt') logits = model(features["pixel_values"])[-1] probability = torch.nn.functional.softmax(logits, dim=-1) probs = probability[0].detach().numpy() confidences = {label: float(probs[i]) for i, label in enumerate(labels)} return confidences interface = gr.Interface( classify, inputs='image', outputs='label', ) interface.launch(debug=True)