Spaces:
Runtime error
Runtime error
File size: 1,356 Bytes
9703df0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import gradio as gr
import nltk
import simplemma
from nltk.tokenize import word_tokenize
from nltk.tokenize import sent_tokenize
from nltk.probability import FreqDist
from simplemma import text_lemmatizer
nltk.download('punkt')
file = "text.txt"
spacy_model = 'https://huggingface.co/spacy/it_core_news_sm'
import spacy
nlp_IT = spacy.load(spacy_model)
def get_lists(file):
with open(file, 'r', encoding='utf-8') as f:
text = f.read()
word_tokenized_text = word_tokenize(text, language='italian')
word_tokenized_text_lower = [word.lower() for word in word_tokenized_text]
sent_tokenized_text = sent_tokenize(text, language='italian')
sent_tokenized_text_lower = [sent.lower() for sent in sent_tokenized_text]
return word_tokenized_text, word_tokenized_text_lower, sent_tokenized_text, sent_tokenized_text_lower
#words, words_lower, sentences, sentences = get_lists(file)
demo = gr.Interface(
sentence_builder,
[
gr.Textbox(),
gr.Radio(["park", "zoo", "road"]),
gr.CheckboxGroup(["ran", "swam", "ate", "slept"]),
gr.Checkbox(label="Is it the morning?"),
],
"text",
examples=[
["cats", "park", ["ran", "swam"], True],
["dog", "zoo", ["ate", "swam"], False],
["bird", "road", ["ran"], False],
["cat", "zoo", ["ate"], True],
],
)
demo.launch() |