Spaces:
Sleeping
Sleeping
Aziz Alto
commited on
Commit
β’
7c72cf3
1
Parent(s):
51c318e
Suggest customized questions for any dataset π₯ powered by GPT
Browse files
app.py
CHANGED
@@ -6,12 +6,12 @@ import pandas as pd
|
|
6 |
import streamlit as st
|
7 |
import streamlit_ace as stace
|
8 |
import duckdb
|
9 |
-
import numpy as np
|
10 |
-
import scipy
|
11 |
import plotly_express
|
12 |
-
import plotly.express as px
|
13 |
-
import plotly.figure_factory as ff
|
14 |
-
import matplotlib.pyplot as plt
|
15 |
import sklearn
|
16 |
from ydata_profiling import ProfileReport
|
17 |
from streamlit_pandas_profiling import st_profile_report
|
@@ -24,7 +24,16 @@ header = """
|
|
24 |
> `GPT-powered` and `Jupyter notebook-inspired`
|
25 |
"""
|
26 |
st.markdown(header, unsafe_allow_html=True)
|
27 |
-
st.markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
if "OPENAI_API_KEY" not in os.environ:
|
30 |
os.environ["OPENAI_API_KEY"] = st.text_input("OpenAI API Key", type="password")
|
@@ -34,6 +43,7 @@ p = st.write
|
|
34 |
print = st.write
|
35 |
display = st.write
|
36 |
|
|
|
37 |
@st.cache_data
|
38 |
def _read_csv(f, **kwargs):
|
39 |
df = pd.read_csv(f, on_bad_lines="skip", **kwargs)
|
@@ -45,8 +55,9 @@ def _read_csv(f, **kwargs):
|
|
45 |
def timer(func):
|
46 |
def wrapper_function(*args, **kwargs):
|
47 |
start_time = time.time()
|
48 |
-
func(*args,
|
49 |
st.write(f"`{(time.time() - start_time):.2f}s.`")
|
|
|
50 |
return wrapper_function
|
51 |
|
52 |
|
@@ -59,7 +70,7 @@ SAMPLE_DATA = {
|
|
59 |
"Country Table": "https://raw.githubusercontent.com/datasciencedojo/datasets/master/WorldDBTables/CountryTable.csv",
|
60 |
"World Cities": "https://raw.githubusercontent.com/dr5hn/countries-states-cities-database/master/csv/cities.csv",
|
61 |
"World States": "https://raw.githubusercontent.com/dr5hn/countries-states-cities-database/master/csv/states.csv",
|
62 |
-
"World Countries": "https://raw.githubusercontent.com/dr5hn/countries-states-cities-database/master/csv/countries.csv"
|
63 |
}
|
64 |
|
65 |
|
@@ -78,7 +89,9 @@ def read_data():
|
|
78 |
if url:
|
79 |
file_ = url
|
80 |
with col3:
|
81 |
-
selected = st.selectbox(
|
|
|
|
|
82 |
if selected:
|
83 |
file_ = SAMPLE_DATA[selected]
|
84 |
|
@@ -122,12 +135,28 @@ def code_editor(language, hint, show_panel, key=None, content=None):
|
|
122 |
_KEYBINDINGS = stace.KEYBINDINGS
|
123 |
col21, col22 = st.columns(2)
|
124 |
with col21:
|
125 |
-
theme = st.selectbox(
|
126 |
-
|
|
|
|
|
|
|
|
|
127 |
with col22:
|
128 |
-
keybinding = st.selectbox(
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
# kwargs = {theme: theme, keybinding: keybinding} # TODO: DRY
|
132 |
if not show_panel:
|
133 |
placeholder.empty()
|
@@ -143,7 +172,7 @@ def code_editor(language, hint, show_panel, key=None, content=None):
|
|
143 |
theme=theme,
|
144 |
font_size=font_size,
|
145 |
tab_size=tab_size,
|
146 |
-
key=key
|
147 |
)
|
148 |
|
149 |
# Display editor's content as you type
|
@@ -167,13 +196,7 @@ def download(df, key, save_as="results.csv"):
|
|
167 |
return _df.to_csv().encode("utf-8")
|
168 |
|
169 |
csv = convert_df(df)
|
170 |
-
st.download_button(
|
171 |
-
"Download",
|
172 |
-
csv,
|
173 |
-
save_as,
|
174 |
-
"text/csv",
|
175 |
-
key=key
|
176 |
-
)
|
177 |
|
178 |
|
179 |
def display_results(query: str, result: pd.DataFrame, key: str):
|
@@ -186,7 +209,7 @@ def display_results(query: str, result: pd.DataFrame, key: str):
|
|
186 |
def run_python_script(user_script, key):
|
187 |
if user_script.startswith("st.") or ";" in user_script:
|
188 |
py = user_script
|
189 |
-
elif user_script.endswith("?"):
|
190 |
in_ = user_script.replace("?", "")
|
191 |
py = f"st.help({in_})"
|
192 |
else:
|
@@ -278,7 +301,7 @@ def display_example_snippets():
|
|
278 |
|
279 |
|
280 |
class GPTWrapper:
|
281 |
-
def __init__(self)
|
282 |
|
283 |
from gpt import AnthropicSerivce, OpenAIService
|
284 |
|
@@ -289,6 +312,7 @@ class GPTWrapper:
|
|
289 |
@st.cache_data
|
290 |
def ask_sql(df_info, question):
|
291 |
from gpt import OpenAIService
|
|
|
292 |
openai_model = OpenAIService()
|
293 |
prompt = GPTWrapper().build_sql_prompt(df_info, question)
|
294 |
res = openai_model.prompt(prompt)
|
@@ -298,18 +322,19 @@ class GPTWrapper:
|
|
298 |
@st.cache_data
|
299 |
def ask_python(df_info, question):
|
300 |
from gpt import OpenAIService
|
|
|
301 |
openai_model = OpenAIService()
|
302 |
prompt = GPTWrapper().build_python_prompt(df_info, question)
|
303 |
res = openai_model.prompt(prompt)
|
304 |
return res, prompt
|
305 |
|
306 |
-
|
307 |
@staticmethod
|
308 |
@st.cache_data
|
309 |
def build_sql_prompt(df_info, question):
|
310 |
prompt = f"""I have data in a pandas dataframe, here is the data schema: {df_info}
|
311 |
Next, I will ask you a question. Assume the table name is `df`.
|
312 |
-
And you will answer in writing a SQL query only.
|
|
|
313 |
"""
|
314 |
return prompt
|
315 |
|
@@ -317,30 +342,49 @@ class GPTWrapper:
|
|
317 |
@st.cache_data
|
318 |
def build_python_prompt(df_info, question):
|
319 |
prompt = f"""I have data in a pandas dataframe, here is the dataframe schema: {df_info}
|
320 |
-
Next, I will ask you a question.
|
321 |
-
|
322 |
-
|
|
|
323 |
|
324 |
-
-
|
325 |
-
-
|
326 |
- Import any required libraries in the first line of the generated code.
|
327 |
-
-
|
328 |
-
-
|
329 |
-
-
|
330 |
-
-
|
|
|
|
|
|
|
331 |
|
332 |
Here is the question: {question}
|
333 |
"""
|
334 |
return prompt
|
335 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
337 |
def ask_gpt_sql(df_info, key):
|
338 |
# -- GPT AI
|
339 |
# agi = GPTWrapper(df_info=df_info)
|
340 |
-
question = st.text_input(
|
341 |
-
|
342 |
-
|
343 |
-
|
|
|
344 |
if question:
|
345 |
# res, prompt = agi.ask_sql(df_info, question)
|
346 |
res, prompt = GPTWrapper().ask_sql(df_info, question)
|
@@ -349,22 +393,34 @@ def ask_gpt_sql(df_info, key):
|
|
349 |
st.code(sql_query, language="sql")
|
350 |
return sql_query
|
351 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
def ask_gpt_python(df_info, key):
|
353 |
# -- GPT AI
|
354 |
-
|
355 |
-
question = st.text_input(
|
356 |
-
|
357 |
-
|
358 |
-
|
|
|
359 |
if question:
|
360 |
-
# res, prompt = agi.ask_python(df_info, question)
|
361 |
res, prompt = GPTWrapper().ask_python(df_info, question)
|
362 |
-
# st.markdown(f"```{prompt}```")
|
363 |
python_code = res.choices[0].message.content
|
364 |
st.code(python_code, language="python")
|
365 |
-
|
366 |
return python_code
|
367 |
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
|
369 |
if __name__ == "__main__":
|
370 |
show_examples = docs()
|
@@ -381,8 +437,6 @@ if __name__ == "__main__":
|
|
381 |
df.info(buf=sio)
|
382 |
df_info = sio.getvalue()
|
383 |
# st.markdown(f"```{df_info}```", unsafe_allow_html=True)
|
384 |
-
|
385 |
-
|
386 |
|
387 |
# run and execute SQL script
|
388 |
def sql_cells(df):
|
@@ -394,24 +448,32 @@ if __name__ == "__main__":
|
|
394 |
Describe the table:
|
395 |
DESCRIBE TABLE df
|
396 |
"""
|
397 |
-
number_cells = st.sidebar.number_input(
|
|
|
|
|
398 |
for i in range(number_cells):
|
399 |
key = f"sql{i}"
|
400 |
col1, col2 = st.columns([2, 1])
|
401 |
st.markdown("<br>", unsafe_allow_html=True)
|
402 |
-
show_panel =
|
403 |
-
|
|
|
404 |
|
405 |
col1.write(f"> `IN[{i+1}]`")
|
406 |
|
407 |
-
# with col2:
|
408 |
# -- GPT AI
|
409 |
query = ask_gpt_sql(df_info, key=f"{key}-gpt")
|
410 |
content = None
|
411 |
-
if query and st.button("
|
412 |
content = query
|
413 |
-
|
414 |
-
sql = code_editor(
|
|
|
|
|
|
|
|
|
|
|
|
|
415 |
if sql:
|
416 |
st.code(sql, language="sql")
|
417 |
st.write(f"`OUT[{i+1}]`")
|
@@ -451,27 +513,42 @@ if __name__ == "__main__":
|
|
451 |
st.bar_chart(groups[i].mean())
|
452 |
```
|
453 |
"""
|
454 |
-
number_cells = st.sidebar.number_input(
|
|
|
|
|
|
|
|
|
|
|
|
|
455 |
for i in range(number_cells):
|
456 |
# st.markdown("<br><br><br>", unsafe_allow_html=True)
|
457 |
col1, col2 = st.columns([2, 1])
|
458 |
# col1.write(f"> `IN[{i+1}]`")
|
459 |
-
show_panel =
|
|
|
|
|
460 |
|
461 |
# -- GPT AI
|
462 |
query = ask_gpt_python(df_info, key=f"{i}-gpt")
|
463 |
content = None
|
464 |
-
if query and st.checkbox("
|
465 |
content = query
|
466 |
-
user_script = code_editor(
|
|
|
|
|
|
|
|
|
|
|
|
|
467 |
if user_script:
|
468 |
-
df.rename(
|
|
|
|
|
469 |
st.write(f"> `IN[{i+1}]`")
|
470 |
st.code(user_script, language="python")
|
471 |
st.write(f"> `OUT[{i+1}]`")
|
472 |
run_python_script(user_script, key=f"{user_script}{i}")
|
473 |
|
474 |
-
|
475 |
if st.sidebar.checkbox("Show SQL cells", value=True):
|
476 |
sql_cells(df)
|
477 |
if st.sidebar.checkbox("Show Python cells", value=True):
|
@@ -479,7 +556,10 @@ if __name__ == "__main__":
|
|
479 |
|
480 |
st.sidebar.write("---")
|
481 |
|
482 |
-
if st.sidebar.checkbox(
|
|
|
|
|
|
|
483 |
st.write("---")
|
484 |
st.header("Data Profiling")
|
485 |
profile = data_profiler(df)
|
|
|
6 |
import streamlit as st
|
7 |
import streamlit_ace as stace
|
8 |
import duckdb
|
9 |
+
import numpy as np # for user session
|
10 |
+
import scipy # for user session
|
11 |
import plotly_express
|
12 |
+
import plotly.express as px # for user session
|
13 |
+
import plotly.figure_factory as ff # for user session
|
14 |
+
import matplotlib.pyplot as plt # for user session
|
15 |
import sklearn
|
16 |
from ydata_profiling import ProfileReport
|
17 |
from streamlit_pandas_profiling import st_profile_report
|
|
|
24 |
> `GPT-powered` and `Jupyter notebook-inspired`
|
25 |
"""
|
26 |
st.markdown(header, unsafe_allow_html=True)
|
27 |
+
st.markdown(
|
28 |
+
"> <sub>[NYC AI Hackathon](https://tech.cornell.edu/events/nyc-gpt-llm-hackathon/) April, 23 2023</sub>",
|
29 |
+
unsafe_allow_html=True,
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
if "ANTHROPIC_API_KEY" not in os.environ:
|
34 |
+
os.environ["ANTHROPIC_API_KEY"] = st.text_input(
|
35 |
+
"Anthropic API Key", type="password"
|
36 |
+
)
|
37 |
|
38 |
if "OPENAI_API_KEY" not in os.environ:
|
39 |
os.environ["OPENAI_API_KEY"] = st.text_input("OpenAI API Key", type="password")
|
|
|
43 |
print = st.write
|
44 |
display = st.write
|
45 |
|
46 |
+
|
47 |
@st.cache_data
|
48 |
def _read_csv(f, **kwargs):
|
49 |
df = pd.read_csv(f, on_bad_lines="skip", **kwargs)
|
|
|
55 |
def timer(func):
|
56 |
def wrapper_function(*args, **kwargs):
|
57 |
start_time = time.time()
|
58 |
+
func(*args, **kwargs)
|
59 |
st.write(f"`{(time.time() - start_time):.2f}s.`")
|
60 |
+
|
61 |
return wrapper_function
|
62 |
|
63 |
|
|
|
70 |
"Country Table": "https://raw.githubusercontent.com/datasciencedojo/datasets/master/WorldDBTables/CountryTable.csv",
|
71 |
"World Cities": "https://raw.githubusercontent.com/dr5hn/countries-states-cities-database/master/csv/cities.csv",
|
72 |
"World States": "https://raw.githubusercontent.com/dr5hn/countries-states-cities-database/master/csv/states.csv",
|
73 |
+
"World Countries": "https://raw.githubusercontent.com/dr5hn/countries-states-cities-database/master/csv/countries.csv",
|
74 |
}
|
75 |
|
76 |
|
|
|
89 |
if url:
|
90 |
file_ = url
|
91 |
with col3:
|
92 |
+
selected = st.selectbox(
|
93 |
+
"Select a sample dataset", options=[""] + list(SAMPLE_DATA)
|
94 |
+
)
|
95 |
if selected:
|
96 |
file_ = SAMPLE_DATA[selected]
|
97 |
|
|
|
135 |
_KEYBINDINGS = stace.KEYBINDINGS
|
136 |
col21, col22 = st.columns(2)
|
137 |
with col21:
|
138 |
+
theme = st.selectbox(
|
139 |
+
"Theme", options=[default_theme] + _THEMES, key=f"{language}1{key}"
|
140 |
+
)
|
141 |
+
tab_size = st.slider(
|
142 |
+
"Tab size", min_value=1, max_value=8, value=4, key=f"{language}2{key}"
|
143 |
+
)
|
144 |
with col22:
|
145 |
+
keybinding = st.selectbox(
|
146 |
+
"Keybinding",
|
147 |
+
options=[_KEYBINDINGS[-2]] + _KEYBINDINGS,
|
148 |
+
key=f"{language}3{key}",
|
149 |
+
)
|
150 |
+
font_size = st.slider(
|
151 |
+
"Font size",
|
152 |
+
min_value=5,
|
153 |
+
max_value=24,
|
154 |
+
value=14,
|
155 |
+
key=f"{language}4{key}",
|
156 |
+
)
|
157 |
+
height = st.slider(
|
158 |
+
"Editor height", value=130, max_value=777, key=f"{language}5{key}"
|
159 |
+
)
|
160 |
# kwargs = {theme: theme, keybinding: keybinding} # TODO: DRY
|
161 |
if not show_panel:
|
162 |
placeholder.empty()
|
|
|
172 |
theme=theme,
|
173 |
font_size=font_size,
|
174 |
tab_size=tab_size,
|
175 |
+
key=key,
|
176 |
)
|
177 |
|
178 |
# Display editor's content as you type
|
|
|
196 |
return _df.to_csv().encode("utf-8")
|
197 |
|
198 |
csv = convert_df(df)
|
199 |
+
st.download_button("Download", csv, save_as, "text/csv", key=key)
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
|
202 |
def display_results(query: str, result: pd.DataFrame, key: str):
|
|
|
209 |
def run_python_script(user_script, key):
|
210 |
if user_script.startswith("st.") or ";" in user_script:
|
211 |
py = user_script
|
212 |
+
elif user_script.endswith("?"): # -- same as ? in Jupyter Notebook
|
213 |
in_ = user_script.replace("?", "")
|
214 |
py = f"st.help({in_})"
|
215 |
else:
|
|
|
301 |
|
302 |
|
303 |
class GPTWrapper:
|
304 |
+
def __init__(self): # , df_info):
|
305 |
|
306 |
from gpt import AnthropicSerivce, OpenAIService
|
307 |
|
|
|
312 |
@st.cache_data
|
313 |
def ask_sql(df_info, question):
|
314 |
from gpt import OpenAIService
|
315 |
+
|
316 |
openai_model = OpenAIService()
|
317 |
prompt = GPTWrapper().build_sql_prompt(df_info, question)
|
318 |
res = openai_model.prompt(prompt)
|
|
|
322 |
@st.cache_data
|
323 |
def ask_python(df_info, question):
|
324 |
from gpt import OpenAIService
|
325 |
+
|
326 |
openai_model = OpenAIService()
|
327 |
prompt = GPTWrapper().build_python_prompt(df_info, question)
|
328 |
res = openai_model.prompt(prompt)
|
329 |
return res, prompt
|
330 |
|
|
|
331 |
@staticmethod
|
332 |
@st.cache_data
|
333 |
def build_sql_prompt(df_info, question):
|
334 |
prompt = f"""I have data in a pandas dataframe, here is the data schema: {df_info}
|
335 |
Next, I will ask you a question. Assume the table name is `df`.
|
336 |
+
And you will answer in writing a SQL query only by using the table `df` and shema above.
|
337 |
+
Here is the question: {question}.
|
338 |
"""
|
339 |
return prompt
|
340 |
|
|
|
342 |
@st.cache_data
|
343 |
def build_python_prompt(df_info, question):
|
344 |
prompt = f"""I have data in a pandas dataframe, here is the dataframe schema: {df_info}
|
345 |
+
Next, I will ask you a question. Assume the data is stored in a variable named `df`.
|
346 |
+
And you will answer in writing a Python code only by using the variable `df` and shema above.
|
347 |
+
|
348 |
+
Here are some instructions you must follow when writing the code:
|
349 |
|
350 |
+
- The answer must be Python code only.
|
351 |
+
- The code must include column names from the dataframe schema above only.
|
352 |
- Import any required libraries in the first line of the generated code.
|
353 |
+
- Use `df` as the variable name for the dataframe.
|
354 |
+
- Don't include any comments in the code.
|
355 |
+
- Every line of code must end with `;`.
|
356 |
+
- For non-plotting answers, you must use `print()` to print the answer.
|
357 |
+
- For plotting answers, one of the folowing options must be used:
|
358 |
+
- `st.pyplot(fig)` to display the plot in the Streamlit app.
|
359 |
+
- plotly_express to generate a plot and `st.plotly_chart()` to show it.
|
360 |
|
361 |
Here is the question: {question}
|
362 |
"""
|
363 |
return prompt
|
364 |
|
365 |
+
@staticmethod
|
366 |
+
@st.cache_data
|
367 |
+
def suggest_questions(df_info, language):
|
368 |
+
prompt = f"""
|
369 |
+
{df_info}
|
370 |
+
|
371 |
+
What questions (exploratory or explanatory) can be asked about this dataset to analyze the data as a whole using {language}? Be as specific as possible based on the data schema above.
|
372 |
+
"""
|
373 |
+
from gpt import OpenAIService
|
374 |
+
|
375 |
+
openai_model = OpenAIService()
|
376 |
+
res = openai_model.prompt(prompt)
|
377 |
+
return res, prompt
|
378 |
+
|
379 |
|
380 |
def ask_gpt_sql(df_info, key):
|
381 |
# -- GPT AI
|
382 |
# agi = GPTWrapper(df_info=df_info)
|
383 |
+
question = st.text_input(
|
384 |
+
"Ask a question about the dataset to get a SQL query that answers the question",
|
385 |
+
placeholder="How many rows are there in the dataset?",
|
386 |
+
key=key,
|
387 |
+
)
|
388 |
if question:
|
389 |
# res, prompt = agi.ask_sql(df_info, question)
|
390 |
res, prompt = GPTWrapper().ask_sql(df_info, question)
|
|
|
393 |
st.code(sql_query, language="sql")
|
394 |
return sql_query
|
395 |
|
396 |
+
with st.expander("Example questions"):
|
397 |
+
res, prompt = GPTWrapper().suggest_questions(df_info, "SQL")
|
398 |
+
suggestions = res.choices[0].message.content
|
399 |
+
st.markdown("Here are some example questions:")
|
400 |
+
st.markdown(f"```{suggestions}```", unsafe_allow_html=True)
|
401 |
+
|
402 |
+
|
403 |
def ask_gpt_python(df_info, key):
|
404 |
# -- GPT AI
|
405 |
+
|
406 |
+
question = st.text_input(
|
407 |
+
"Ask a question about the dataset to get a Python code that answers the question",
|
408 |
+
placeholder="How many rows and columns are there in the dataset?",
|
409 |
+
key=key,
|
410 |
+
)
|
411 |
if question:
|
|
|
412 |
res, prompt = GPTWrapper().ask_python(df_info, question)
|
|
|
413 |
python_code = res.choices[0].message.content
|
414 |
st.code(python_code, language="python")
|
415 |
+
|
416 |
return python_code
|
417 |
|
418 |
+
with st.expander("Example questions"):
|
419 |
+
res, prompt = GPTWrapper().suggest_questions(df_info, "Python")
|
420 |
+
suggestions = res.choices[0].message.content
|
421 |
+
st.markdown("Here are some example questions:")
|
422 |
+
st.markdown(suggestions, unsafe_allow_html=True)
|
423 |
+
|
424 |
|
425 |
if __name__ == "__main__":
|
426 |
show_examples = docs()
|
|
|
437 |
df.info(buf=sio)
|
438 |
df_info = sio.getvalue()
|
439 |
# st.markdown(f"```{df_info}```", unsafe_allow_html=True)
|
|
|
|
|
440 |
|
441 |
# run and execute SQL script
|
442 |
def sql_cells(df):
|
|
|
448 |
Describe the table:
|
449 |
DESCRIBE TABLE df
|
450 |
"""
|
451 |
+
number_cells = st.sidebar.number_input(
|
452 |
+
"Number of SQL cells to use", value=1, max_value=40
|
453 |
+
)
|
454 |
for i in range(number_cells):
|
455 |
key = f"sql{i}"
|
456 |
col1, col2 = st.columns([2, 1])
|
457 |
st.markdown("<br>", unsafe_allow_html=True)
|
458 |
+
show_panel = (
|
459 |
+
False # col2.checkbox("Show cell config panel", key=f"{i}-sql")
|
460 |
+
)
|
461 |
|
462 |
col1.write(f"> `IN[{i+1}]`")
|
463 |
|
|
|
464 |
# -- GPT AI
|
465 |
query = ask_gpt_sql(df_info, key=f"{key}-gpt")
|
466 |
content = None
|
467 |
+
if query and st.button("Run the generated code", key=f"{key}-use-sql"):
|
468 |
content = query
|
469 |
+
|
470 |
+
sql = code_editor(
|
471 |
+
"sql",
|
472 |
+
hint,
|
473 |
+
show_panel=show_panel,
|
474 |
+
key=key,
|
475 |
+
content=content if content else None,
|
476 |
+
)
|
477 |
if sql:
|
478 |
st.code(sql, language="sql")
|
479 |
st.write(f"`OUT[{i+1}]`")
|
|
|
513 |
st.bar_chart(groups[i].mean())
|
514 |
```
|
515 |
"""
|
516 |
+
number_cells = st.sidebar.number_input(
|
517 |
+
"Number of Python cells to use",
|
518 |
+
value=1,
|
519 |
+
max_value=40,
|
520 |
+
min_value=1,
|
521 |
+
help=help,
|
522 |
+
)
|
523 |
for i in range(number_cells):
|
524 |
# st.markdown("<br><br><br>", unsafe_allow_html=True)
|
525 |
col1, col2 = st.columns([2, 1])
|
526 |
# col1.write(f"> `IN[{i+1}]`")
|
527 |
+
show_panel = (
|
528 |
+
False # col2.checkbox("Show cell config panel", key=f"panel{i}")
|
529 |
+
)
|
530 |
|
531 |
# -- GPT AI
|
532 |
query = ask_gpt_python(df_info, key=f"{i}-gpt")
|
533 |
content = None
|
534 |
+
if query and st.checkbox("Run the generated code", key=f"{i}-use-python"):
|
535 |
content = query
|
536 |
+
user_script = code_editor(
|
537 |
+
"python",
|
538 |
+
hint,
|
539 |
+
show_panel=show_panel,
|
540 |
+
key=i,
|
541 |
+
content=content if content else None,
|
542 |
+
)
|
543 |
if user_script:
|
544 |
+
df.rename(
|
545 |
+
columns={"lng": "lon"}, inplace=True
|
546 |
+
) # hot-fix for "World Population" dataset
|
547 |
st.write(f"> `IN[{i+1}]`")
|
548 |
st.code(user_script, language="python")
|
549 |
st.write(f"> `OUT[{i+1}]`")
|
550 |
run_python_script(user_script, key=f"{user_script}{i}")
|
551 |
|
|
|
552 |
if st.sidebar.checkbox("Show SQL cells", value=True):
|
553 |
sql_cells(df)
|
554 |
if st.sidebar.checkbox("Show Python cells", value=True):
|
|
|
556 |
|
557 |
st.sidebar.write("---")
|
558 |
|
559 |
+
if st.sidebar.checkbox(
|
560 |
+
"Generate Data Profile Report",
|
561 |
+
help="pandas profiling, generated by [ydata-profiling](https://github.com/ydataai/ydata-profiling)",
|
562 |
+
):
|
563 |
st.write("---")
|
564 |
st.header("Data Profiling")
|
565 |
profile = data_profiler(df)
|