import os os.system("pip install transformers") os.system("pip3 install torch==1.10.1+cpu torchvision==0.11.2+cpu torchaudio==0.10.1+cpu -f " "https://download.pytorch.org/whl/cpu/torch_stable.html") os.system("pip install mtranslate") os.system("pip install requests") os.system("pip install random") import transformers import json import random import requests from mtranslate import translate import streamlit as st MODELS = { "GPT-2 Model Recycled From English": { "url": "https://api-inference.huggingface.co/models/GroNLP/gpt2-small-dutch" }, } PROMPT_LIST = { "Er was eens...": ["Er was eens..."], "Dag.": ["Hallo, mijn naam is "], "Te zijn of niet te zijn?": ["Naar mijn mening is 'zijn'"], } def query(payload, model_name): data = json.dumps(payload) print("model url:", MODELS[model_name]["url"]) response = requests.request( "POST", MODELS[model_name]["url"], headers={}, data=data ) return json.loads(response.content.decode("utf-8")) def process( text: str, model_name: str, max_len: int, temp: float, top_k: int, top_p: float ): payload = { "inputs": text, "parameters": { "max_new_tokens": max_len, "top_k": top_k, "top_p": top_p, "temperature": temp, "repetition_penalty": 2.0, }, "options": { "use_cache": True, }, } return query(payload, model_name) # Page st.set_page_config(page_title="Dutch GPT-2 Demo") st.title("Dutch GPT-2") # Sidebar st.sidebar.subheader("Configurable parameters") max_len = st.sidebar.number_input( "Maximum length", value=100, help="The maximum length of the sequence to be generated.", ) temp = st.sidebar.slider( "Temperature", value=1.0, min_value=0.1, max_value=100.0, help="The value used to module the next token probabilities.", ) top_k = st.sidebar.number_input( "Top k", value=10, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.", ) top_p = st.sidebar.number_input( "Top p", value=0.95, help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.", ) do_sample = st.sidebar.selectbox( "Sampling?", (True, False), help="Whether or not to use sampling; use greedy decoding otherwise.", ) # Body st.markdown( """ Dutch GPT-2 model (small) is based on the English GPT-2 model: Researches [Wietse de Vries](https://www.semanticscholar.org/author/Wietse-de-Vries/144611157) and [M. Nissim](https://www.semanticscholar.org/author/M.-Nissim/2742475) obtained this model by transfering the English GPT-2 model in multiple procedure while exploiting genetic closeness between Dutch and English. During this process, they retrained the lexical embeddings of the original English GPT-2 model and did additional fine-tuning of the full Dutch model for better text generation. For more information on the model: [arXiv](https://arxiv.org/abs/2012.05628) [GitHub](https://github.com/wietsedv/gpt2-recycle) """ ) model_name = st.selectbox("Model", (list(MODELS.keys()))) ALL_PROMPTS = list(PROMPT_LIST.keys()) + ["Custom"] prompt = st.selectbox("Prompt", ALL_PROMPTS, index=len(ALL_PROMPTS) - 1) if prompt == "Custom": prompt_box = "Enter your text here" else: prompt_box = random.choice(PROMPT_LIST[prompt]) text = st.text_area("Enter text", prompt_box) if st.button("Run"): with st.spinner(text="Getting results..."): st.subheader("Result") print(f"maxlen:{max_len}, temp:{temp}, top_k:{top_k}, top_p:{top_p}") result = process( text=text, model_name=model_name, max_len=int(max_len), temp=temp, top_k=int(top_k), top_p=float(top_p), ) print("result:", result) if "error" in result: if type(result["error"]) is str: st.write(f'{result["error"]}.', end=" ") if "estimated_time" in result: st.write( f'Please try again in about {result["estimated_time"]:.0f} seconds.' ) else: if type(result["error"]) is list: for error in result["error"]: st.write(f"{error}") else: result = result[0]["generated_text"] st.write(result.replace("\n", " \n")) st.text("English translation") st.write(translate(result, "en", "nl").replace("\n", " \n")) st.subheader("Reference:") st.markdown( """ ``` @inproceedings{de-vries-nissim-2021-good, title = "As Good as New. How to Successfully Recycle {E}nglish {GPT}-2 to Make Models for Other Languages", author = "de Vries, Wietse and Nissim, Malvina", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.74", doi = "10.18653/v1/2021.findings-acl.74", pages = "836--846", } ``` """ )