Spaces:
Runtime error
Runtime error
import os | |
os.system("pip install torch") | |
os.system("pip install transformers") | |
os.system("pip install sentencepiece") | |
os.system("pip install plotly") | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline | |
import sentencepiece | |
import torch | |
import plotly.graph_objects as go | |
import streamlit as st | |
text_1 = """Avec la Ligue 1 qui reprend ses droits à partir de vendredi 5 août, et un premier match pour ce qui les concerne samedi soir, à Clermont-Ferrand, l’heure est désormais arrivée pour les Parisiens d’apporter les preuves que ce changement d’ère est bien une réalité.""" | |
text_2 = """Créées en 1991 sur un modèle inspiré de la Fête de la musique, les Nuits des étoiles ont pour thème en 2022 l’exploration spatiale, en partenariat avec l’Agence spatiale européenne.""" | |
def list2text(label_list): | |
labels = "" | |
for label in label_list: | |
labels = labels + label + "," | |
labels = labels[:-1] | |
return labels | |
label_list_1 = ["monde", "économie", "sciences", "culture", "santé", "politique", "sport", "technologie"] | |
label_list_2 = ["positif", "négatif", "neutre"] | |
st.title("French Zero-Shot Text Classification \ | |
with CamemBERT and XLM-R") | |
# Body | |
st.markdown( | |
""" | |
This application makes use of [CamemBERT](https://camembert-model.fr/) and [XLM-R](https://arxiv.org/abs/1911.02116) models that were fine-tuned on the XNLI corpus. While CamemBERT was fine-tuned only on the French part of the corpus by [Baptiste Doyen](https://huggingface.co/BaptisteDoyen), XLM-R was done so on all parts of it by [Joe Davison](https://huggingface.co/joeddav), including French. Therefore, in this app, both of these two models are intended to be used and made comparison of each other for zero-shot classification in French. | |
""" | |
) | |
model_list = ['BaptisteDoyen/camembert-base-xnli', | |
'joeddav/xlm-roberta-large-xnli'] | |
st.sidebar.header("Select Model") | |
model_checkpoint = st.sidebar.radio("", model_list) | |
st.sidebar.write("For the full descriptions of the models:") | |
st.sidebar.write("[camembert-base-xnli](https://huggingface.co/BaptisteDoyen/camembert-base-xnli)") | |
st.sidebar.write("[xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli)") | |
st.sidebar.write("For the XNLI Dataset:") | |
st.sidebar.write("[XNLI](https://huggingface.co/datasets/xnli)") | |
st.subheader("Select Text and Label List") | |
st.text_area("Text #1", text_1, height=128) | |
st.text_area("Text #2", text_2, height=128) | |
st.write(f"Label List #1: {list2text(label_list_1)}") | |
st.write(f"Label List #2: {list2text(label_list_2)}") | |
text = st.radio("Select Text", ("Text #1", "Text #2", "New Text")) | |
labels = st.radio("Select Label List", ("Label List #1", "Label List #2", "New Label List")) | |
if text == "Text #1": selected_text = text_1 | |
elif text == "Text #2": selected_text = text_2 | |
elif text == "New Text": | |
selected_text = st.text_area("New Text", value="", height=128) | |
if labels == "Label List #1": selected_labels = label_list_1 | |
elif labels == "Label List #2": selected_labels = label_list_2 | |
elif labels == "New Label List": | |
selected_labels = st.text_area("New Label List (Pls Input as comma-separated)", value="", height=16).split(",") | |
def setModel(model_checkpoint): | |
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint) | |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
return pipeline("zero-shot-classification", model=model, tokenizer=tokenizer) | |
Run_Button = st.button("Run", key=None) | |
if Run_Button == True: | |
zstc_pipeline = setModel(model_checkpoint) | |
output = zstc_pipeline(sequences=selected_text, candidate_labels=selected_labels) | |
output_labels = output["labels"] | |
output_scores = output["scores"] | |
st.header("Result") | |
import plotly.graph_objects as go | |
fig = go.Figure([go.Bar(x=output_labels, y=output_scores)]) | |
st.plotly_chart(fig, use_container_width=False, sharing="streamlit") |