azizbarank's picture
Create new file
688e382
raw
history blame
1.77 kB
import os
os.system("pip install torch")
os.system("pip install transformers")
os.system("pip install sentencepiece")
import streamlit as st
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("azizbarank/distilbert-base-turkish-cased-sentiment")
model = AutoModelForSequenceClassification.from_pretrained("azizbarank/distilbert-base-turkish-cased-sentiment")
def classify(text):
cls= pipeline("text-classification",model=model, tokenizer=tokenizer)
return cls(text)[0]['label']
site_header = st.container()
text_input = st.container()
model_results = st.container()
with site_header:
st.title('Turkish Sentiment Analysis 😀😠')
st.markdown(
"""
[Distilled Turkish BERT model](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) that I fine-tuned on the [sepidmnorozy/Turkish_sentiment](https://huggingface.co/datasets/sepidmnorozy/Turkish_sentiment) dataset that is heavily based on different reviews about services/places.
For more information on the dataset:
* [Hugging Face](https://huggingface.co/datasets/sepidmnorozy/Turkish_sentiment)
"""
)
with text_input:
st.header('Is Your Review Considered Positive or Negative?')
st.write("""*Please note that predictions are based on how the model was trained, so it may not be an accurate representation.*""")
user_text = st.text_input('Enter Text', max_chars=300)
with model_results:
st.subheader('Prediction:')
if user_text:
prediction = classify(user_text)
if prediction == "LABEL_0":
st.subheader('**Negative**')
else:
st.subheader('**Positive**')
st.text('')